CHEMISTRY 12 - UNIT IV - Acids, Bases and Salts

I: Acids, Bases and Salts (Properties and definitions)

It is expected that students will be able to...

11: Identification of Acids/Bases

1) Make a table with the following headings and make a complete list of tests and outcomes from your data from the lab and everyday experiences.

Expeimental method	Acid property	Base property

12: General acids/bases

- 1) Write names and formulae of some common acids and bases and outline some of their common properties, uses and commercial names. (section IV.2)
- 2) Which of the following is a common base found in drain cleaners?
 - a) bleach
- b) vinegar
- c) milk of magnesia d) sodium hydroxide

13: Acid/Base definitions

- 1) What is the GENERAL definition of: (a) an acid; (b) a base; (c) a salt
- 2) What is a definition for an Arrhenius (a) acid; (b) base (do NOT give a typical textbook definition)
- 3) What is a definition for a Bronsted-Lowry (a) acid; (b) base (do NOT give a typical textbook definition)

14: The Protonated Water Molecule

1) What is the relationship between an hydrogen cation and a hydronium ion? Give an analogy to relate the two particles to a 'real-life' example (a macroscale analogy to be exact)

J1: Strong particles vs Weak particles

1) Make a table with the following headings and discuss the following experimental methods: give TWO examples of each, what are 'other known' names for each, bond strength, solubility, ionization, type of reaction with water, conductivity.

J2: Weak acids/bases and Conjugate acid/base pairs

- 1) For the following reactions below, indicate which particles are acting as weak acids and weak bases AND identify the conjugate acid/base pairs in each!
 - a) NH_4^+ + $CN^ \longleftrightarrow$ HCN + NH_3
 - b) HSO_3 + HC_2O_4 \longleftrightarrow H_2SO_3 + C_2O_4
 - c) $CH_3COOH + NH_4^+ \longleftrightarrow NH_5^{+2} + CH_3COO^-$

List any particle(s) that exhibit amphiprotic behaviour in the above reactions

- 2) Which equation best describes the interaction of a weak base with water?
 - a) NaOH → Na⁺ + OH⁻
- b) CH₃CH₂OH → CH₃CH₂OH
- c) $HPO_4^{-2} + H_2O \rightarrow PO_4^{-3} + H_3O^+$ d) $N_2H_4 + H_2O \rightarrow N_2H_5^+ + OH^-$

J3: Conductivity of solutions

- 1) Consider the following solutions: 0.1M HCl; 0.2M H₃PO₄; 0.3M NaOH; 0.4M NaCl
 - a) Give the chemical equation for each particle in water.
 - b) Rank the following particles as an acid, base OR a salt.
 - c) Rank the following particles as a Strong particle or a Weak particle
 - d) Rank the following solutions in terms of their conductivity tested with the same circuit from lowest to highest conductivity.

J4: Predicting Products for acid/base reactions

- 1) For the each of the following situations, you are mixing the following together in a closed system. Write out the predominant reaction that will occur.
 - a) $0.2M \text{ HSO}_4$ and $0.2M \text{ NH}_3$
 - b) 0.2M HBr and 0.2M NaOH
 - c) 0.2M H₂BO₃ and 0.2M citric acid
 - d) $0.2 \text{ M H}_2\text{CO}_3$ and 0.2M HSO_4^- (OR $CO_{2(g)}$ is bubbled into a solution of HSO_4^-)