DYNAMIC EQUILIBRIUM STUDY GUIDE

Multiple Choice Section: This study guide is a compilation of questions from provincial exams since April 1994. I urge you to become intimately familiar with question types. You will notice that questions from one year to another are very similar in their composition. Identification of question types will allow you to be more efficient in answering these questions on the provincial examination. My recommendations for using this study guide are as follows:

1. **DO ALL THE QUESTIONS** in this booklet. These are actual Provincial Exam questions! Your own provincial exam and unit test will include questions similar to the ones in this booklet!
2. **RESIST THE URGE TO LOOK AT THE ANSWER KEY** until you have given all the questions in the section your best effort. Don't do one question, then look at the key, then do another and look at the key, and so on. Each time you look at one answer in the study guide, your eye will notice other answers around them, and this will reduce the effectiveness of those questions in helping you to learn.
3. **LEARN FROM YOUR MISTAKES!** If you get a question wrong, **figure out why**! If you are having difficulty, **talk to your study partner**, or maybe **phone someone in your Peer Tutoring group**. Get together with group members or other students from class and work on these questions together. Explain how you got your answers to tough questions to others. In explaining yourself to someone else, you will learn the material better yourself (try it!) Ask your teacher to explain the questions to you during tutorial or after school. **Your goal should be to get 100% on any Chemistry 12 multiple choice test**- learning from your mistakes in this booklet will really help you in your efforts to meet this goal!
4. **This is REALLY CRUCIAL: DO NOT mark the answer anywhere on the questions themselves.** For example, do not circle any of options A B C or D-instead use a different sheet of paper to place your answers on. By avoiding this urge, you can re-use this study guide effectively again, when preparing for your final exam. In the box to the left, put an asterisk or small note to yourself to indicate that you got the question wrong and need to come back to it. If you got the question correct initially, a check mark might be assurance that you understand this type of question and therefore can concentrate on other questions that present a challenge to you.
5. **Check Off the STATUS box on the PRESCRIBED LEARNING OUTCOMES sheet.** I have tried to organize the questions in the identical sequence to which they appear on your Dynamic Equilibrium Prescribed Learning Outcome sheet. By doing this, you can be confident that you know everything you need to know for both the UNIT EXAM and PROVINCIAL EXAM!

TABLE OF CONTENTS:

PART ONE- MULTIPLE CHOICE

INTRODUCTION TO DYNAMIC EQUILIBRIUM .. 2
LE CHATELIER’S PRINCIPLE .. 9
THE EQUILIBRIUM CONSTANT ..17
MULTIPLE CHOICE ANSWERS ..34

PART TWO- WRITTEN ... 35
WRITTEN SOLUTION KEY ..42

CHEM......IS.....TRY
INTRODUCTION TO EQUILIBRIUM

1 D1 A saturated NaCl \((aq)\) solution is an example of an equilibrium system because of the reversible nature of
A. solidifying and melting
B. crystallizing and dissolving
C. evaporating and condensing
D. crystal structure and bond energy.

2 D3 At different conditions, the relationship between the forward and reverse rates of reaction in an equilibrium system can be represented by:

3 D3 Consider the following graph:

When equilibrium is reached, the rate of the forward reaction is
A. 0.00 mol/min
B. 0.25 mol/min
C. 1.0 mol/min
D. 3.0 mol/min

4 D3 Consider the following equilibrium:

\[\text{N}_2(g) + \text{O}_2(g) \rightleftharpoons 2\text{NO}(g) \]

Nitrogen gas and oxygen gas react when placed in a closed container. As the reaction proceeds towards equilibrium, the rate of the reverse reaction
A. increases as the concentration of products decreases.
B. decreases as the concentration of products decreases.
C. increases as the concentration of products increases.
D. decreases as the concentration of products increases.

5 D3 Consider the following equilibrium:

\[\text{H}_2\text{O}(g) + \text{CO}(g) \rightleftharpoons \text{H}_2(g) + \text{CO}_2(g) \]

At high temperature, H\(_2\)O and CO are placed in a closed container. As the system approaches equilibrium, the
A. rate of the forward and reverse reactions both increase.
B. rate of the forward and reverse reactions both decrease.
C. rate of the forward reaction decreases and the rate of the reverse reaction increases.
D. rate of the forward reaction increases and the rate of the reverse reaction decreases.
6 D3 A 1.00 L flask contains a gaseous equilibrium system. The addition of reactants to this flask results in a:
A. shift left and a decrease in the concentration of products.
B. shift left and an increase in the concentration of products.
C. shift right and a decrease in the concentration of products.
D. shift right and an increase in the concentration of products.

7 D3 Consider the following:

\[2\text{NH}_3(g) \rightleftharpoons \text{N}_2(g) + 3\text{H}_2(g) \]

A flask is initially filled with NH\textsubscript{3}. As the system approaches equilibrium, the rate of the forward reaction
A. increases as the rate of the reverse reaction decreases.
B. decreases as the rate of the reverse reaction increases.
C. increases as the rate of the reverse reaction increases.
D. decreases as the rate of the reverse reaction decreases.

8 D3 Consider the following equilibrium:

\[\text{N}_2\text{O}_4(g) \rightleftharpoons 2\text{NO}_2(g) \]

Initially, a 1.0 L container is filled with 2.0 mol of NO\textsubscript{2}. As the system approaches equilibrium, the rate of reaction of NO\textsubscript{2}
A. increases and \([\text{N}_2\text{O}_4]\) increases.
B. increases and \([\text{N}_2\text{O}_4]\) decreases.
C. decreases and \([\text{N}_2\text{O}_4]\) increases.
D. decreases and \([\text{N}_2\text{O}_4]\) decreases.

9 D3 Consider the following equilibrium:

\[\text{SO}_2\text{Cl}_2(g) \rightleftharpoons \text{SO}_2(g) + \text{Cl}_2(g) \]

A 1.0 L container is initially filled with 2.0 mol of SO\textsubscript{2}Cl\textsubscript{2}. As the reaction proceeds towards equilibrium, the rate of the forward reaction
A. increases and the \([\text{SO}_2] \) increases.
B. increases and the \([\text{SO}_2] \) decreases.
C. decreases and the \([\text{SO}_2] \) increases.
D. decreases and the \([\text{SO}_2] \) decreases.

10 D3 Consider the following reversible reaction:

\[\text{Fe}^{3+}(aq) + \text{SCN}^-(aq) \rightleftharpoons \text{FeSCN}^{2+}(aq) \]

A solution of Fe(NO\textsubscript{3})\textsubscript{3} is added to a solution of KSCN. Which one of the following statements describes the changes in forward and reverse reaction rates as the reaction moves towards equilibrium?
A. Forward and reverse rates increase.
B. Forward and reverse rates decrease.
C. Forward rate increases and reverse rate decreases.
D. Forward rate decreases and reverse rate increases.
11. Consider the following equilibrium:

\[\text{N}_2(g) + 2\text{O}_2(g) \rightleftharpoons 2\text{NO}_2(g) \]

Equal moles of N\(_2\) and O\(_2\) are added, under certain conditions, to a closed container. Which of the following describes the changes in the reverse reaction which occur as the system proceeds toward equilibrium?

<table>
<thead>
<tr>
<th>Rate of Reverse Reaction</th>
<th>[NO(_2)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. increases</td>
<td>increases</td>
</tr>
<tr>
<td>B. decreases</td>
<td>increases</td>
</tr>
<tr>
<td>C. increases</td>
<td>decreases</td>
</tr>
<tr>
<td>D. decreases</td>
<td>decreases</td>
</tr>
</tbody>
</table>

12. Consider the following equilibrium:

\[2\text{O}_3(g) \rightleftharpoons 3\text{O}_2(g) \quad K_{eq} = 65 \]

Initially 0.10 moles of O\(_3\) and 0.10 moles of O\(_2\) are placed in a 1.0L container. Which of the following describes the changes in concentration as the reaction proceeds towards equilibrium?

<table>
<thead>
<tr>
<th>[O(_3)]</th>
<th>[O(_2)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. decreases</td>
<td>decreases</td>
</tr>
<tr>
<td>B. decreases</td>
<td>increases</td>
</tr>
<tr>
<td>C. increases</td>
<td>decreases</td>
</tr>
<tr>
<td>D. increases</td>
<td>increases</td>
</tr>
</tbody>
</table>

13. Consider the following equilibrium:

\[\text{H}_2\text{O}(g) + \text{CO}(g) \rightleftharpoons \text{H}_2(g) + \text{CO}_2(g) \]

A closed container is initially filled with H\(_2\)O and CO. As the reaction proceeds towards equilibrium the:

A. [CO] and [CO\(_2\)] both increase.
B. [CO] and [CO\(_2\)] both decrease.
C. [CO] increases and [CO\(_2\)] decreases.
D. [CO] decreases and [CO\(_2\)] increases.

14. Which of the following describes all chemical equilibrium systems?

A. The mass of the reactants equals the mass of the products.
B. The species are present in the same ratio as in the balanced equation.
C. The rate of the forward reaction equals the rate of the reverse reaction.
D. The concentration of the reactants equals the concentration of the products.

15. Which of the following apply to all equilibrium systems?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Forward and reverse rates are equal</td>
</tr>
<tr>
<td>II</td>
<td>Macroscopic properties are constant</td>
</tr>
<tr>
<td>III</td>
<td>Mass of reactants equals mass of products</td>
</tr>
</tbody>
</table>

A. I and II only
B. I and III only
C. II and III only
D. I, II and III
16 D4 Consider the following:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>forward and reverse rates are equal</td>
</tr>
<tr>
<td>II</td>
<td>macroscopic properties are constant</td>
</tr>
<tr>
<td>III</td>
<td>can be achieved from either direction</td>
</tr>
<tr>
<td>IV</td>
<td>concentrations of reactants and products are equal</td>
</tr>
</tbody>
</table>

Which of the above are true for all equilibrium systems?

A. I and II only
B. I and IV only
C. I, II and III only
D. II, III and IV only

17 D4 In all systems at equilibrium, the
A. concentration of reactants is less than the concentration of products.
B. concentration of reactants and the concentration of products are equal.
C. concentration of reactants is greater than the concentration of products.
D. concentration of reactants and the concentration of products are constant.

18 D4 Consider the following equilibrium:

\[2\text{SO}_3(g) \rightleftharpoons 2\text{SO}_2(g) + \text{O}_2(g) \]

At equilibrium, the rate of decomposition of SO\(_3\)
A. equals the rate of formation of O\(_2\)
B. equals the rate of formation of SO\(_3\)
C. is less than the rate of formation of O\(_2\)
D. is less than the rate of formation of SO\(_3\)

19 D4 Which of the following statements are true for all equilibrium systems?
I. Macroscopic properties are constant.
II. Mass of the reactants equals mass of the products.
III. An equilibrium can be achieved from either products or reactants.

A. I and II only
B. I and III only
C. II and III only
D. I, II and III

20 D4 Which of the following is true for all equilibrium systems?
A. The mass of reactants is equal to the mass of products.
B. Addition of a catalyst changes the equilibrium concentrations.
C. The concentration of reactants is equal to the concentration of products.
D. The rate of the forward reaction is equal to the rate of the reverse reaction.

21 D4 Which of the following is characteristic of all systems at equilibrium?
A. Activation energy is not required.
B. Changes do not occur at the microscopic level.
C. Two opposing reactions occur at the same rate.
D. Temperature and pressure affect the equilibrium position equally.

22 D4 Consider the following:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>constant temperature</td>
</tr>
<tr>
<td>II</td>
<td>equal concentrations of reactants and products</td>
</tr>
<tr>
<td>III</td>
<td>equal rates of forward and reverse reactions</td>
</tr>
</tbody>
</table>

A system at equilibrium must have
A. I and II only
B. I and III only
C. II and III only
D. I, II and III

23 D4 Macroscopic properties become constant in an equilibrium system when
A. all reactions have stopped.
B. the reactants are completely used up.
C. maximum enthalpy has been reached.
D. forward and reverse reaction rates are equal.

24 D4 Which of the following does not apply to all chemical equilibrium systems?
A. They are closed
B. The macroscopic properties are constant.
C. Forward and reverse reaction rates are equal.
D. There are equal concentrations of reactants and products.
25 D4 Which of the following applies to a chemical equilibrium?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Forward and reverse reaction rates are equal</td>
</tr>
<tr>
<td>II.</td>
<td>Equilibrium can be achieved from either direction</td>
</tr>
<tr>
<td>III.</td>
<td>Macroscopic properties are constant</td>
</tr>
</tbody>
</table>

A. I only
B. I and II only
C. II and III only
D. I, II and III

26 D5 Chemical equilibrium is said to be dynamic because

A. the reaction proceeds quickly.
B. the mass of the reactants is decreasing.
C. the macroscopic properties are constant.
D. both forward and reverse reactions are occurring.

27 D5 Equilibrium is a dynamic process because the

A. macroscopic properties are not changing.
B. mass of reactants equals the mass of products.
C. forward and reverse reactions continue to occur.
D. concentrations of the reactants and products are constant.

28 D5 Equilibrium is said to be dynamic because the

A. forward and reverse reactions stop
B. reverse reaction goes to completion.
C. forward reaction goes to completion
D. forward and reverse reactions continue.

29 D5 A system at equilibrium is said to be dynamic because at equilibrium the

A. temperature does not change.
B. macroscopic properties are constant.
C. forward and reverse reactions continue to occur.
D. concentrations of reactants and products are constant.

30 D5 A chemical equilibrium is described as dynamic because:

A. maximum randomness has been achieved.
B. the pressure and temperature do not change.
C. both reactants and products continue to form.
D. the concentrations of chemical species remain constant.

31 D7 Consider the following reaction:

\[\text{N}_2(g) + 3\text{H}_2(g) \rightarrow 2\text{NH}_3(g) + \text{energy} \]

Which of the following describes the changes in enthalpy and entropy as the reaction proceeds?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>increases decreases</td>
</tr>
<tr>
<td>B.</td>
<td>increases increases</td>
</tr>
<tr>
<td>C.</td>
<td>decreases decreases</td>
</tr>
<tr>
<td>D.</td>
<td>decreases increases</td>
</tr>
</tbody>
</table>

32 D7 In which reaction is entropy decreasing?

A. \(\text{H}_2\text{O}(l) \rightarrow \text{H}_2\text{O}(g) \)
B. \(\text{N}_2\text{O}_4(g) \rightarrow 2\text{NO}_2(g) \)
C. \(\text{CaCO}_3(s) \rightarrow \text{CaO}(s) + \text{CO}_2(g) \)
D. \(\text{Fe}^{3+}(aq) + \text{SCN}^-(aq) \rightarrow \text{FeSCN}^{2+}(aq) \)

33 D7 Consider the following equilibrium:

\[\text{N}_2(g) + 3\text{H}_2(g) \rightleftharpoons 2\text{NH}_3(g) + 92 \text{ kJ} \]

The forward reaction is

A. exothermic and entropy is increasing.
B. exothermic and entropy is decreasing.
C. endothermic and entropy is increasing.
D. endothermic and entropy is decreasing.
34. In which reaction is the enthalpy of the reactants greater than the enthalpy of the products?
 A. \(\text{H}_2\text{O}(s) \rightarrow \text{H}_2\text{O}(l) \)
 B. \(\text{H}_2\text{O}(s) \rightarrow \text{H}_2\text{O}(g) \)
 C. \(\text{H}_2\text{O}(l) \rightarrow \text{H}_2\text{O}(s) \)
 D. \(\text{H}_2\text{O}(l) \rightarrow \text{H}_2\text{O}(g) \)

35. Consider the following reaction:
 \[\text{Na}_2\text{CO}_3(s) + 2\text{HCl}(aq) \rightarrow 2\text{NaCl}(aq) + \text{CO}_2(g) + \text{H}_2\text{O}(l) \quad \Delta H = -27.7 \text{ kJ} \]
 In this reaction,
 A. minimum enthalpy and maximum entropy both favour products.
 B. minimum enthalpy and maximum entropy both favour reactants.
 C. minimum enthalpy favours products and maximum entropy favours reactants.
 D. minimum enthalpy favours reactants and maximum entropy favours products.

36. Consider the following possible reaction:
 \[\text{N}_2\text{O}(g) + \text{NO}_2(g) \rightarrow 3\text{NO}(g) \quad \Delta H = +156 \text{ kJ} \]
 Which of the following statements is correct?
 A. Minimum enthalpy and maximum entropy both favour the products.
 B. Minimum enthalpy and maximum entropy both favour the reactants.
 C. Minimum enthalpy favours the reactants and maximum entropy favours the products.
 D. Minimum enthalpy favours the products and maximum entropy favours the reactants.

37. Consider the following equilibrium:
 \[2\text{NO}_2(g) \rightleftharpoons \text{N}_2\text{O}_4(g) + 59 \text{ kJ} \]
 For the above reaction,
 A. both minimum enthalpy and maximum entropy favour products.
 B. both minimum enthalpy and maximum entropy favour reactants.
 C. minimum enthalpy favours reactants and maximum entropy favours products.
 D. minimum enthalpy favours products and maximum entropy favours reactants.

38. In which of the following does the entropy decrease?
 A. \(\text{NaCl}(s) \rightarrow \text{Na}^+(aq) + \text{Cl}^-(aq) \)
 B. \(4\text{NO}(g) + 6\text{H}_2\text{O}(g) \rightarrow 4\text{NH}_3(g) + 5\text{O}_2(g) \)
 C. \(2\text{NaHCO}_3(s) \rightarrow \text{Na}_2\text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2\text{O}(g) \)
 D. \(\text{CaCO}_3(s) + 2\text{HCl}(aq) \rightarrow \text{CaCl}_2(aq) + \text{CO}_2(g) + \text{H}_2\text{O}(l) \)

39. In which of the following systems will the factors of entropy and enthalpy both favour the reactants?
 A. \(3\text{C}(s) + 3\text{H}_2(g) + \text{heat} \rightleftharpoons \text{C}_3\text{H}_6(g) \)
 B. \(\text{PCl}_5(g) + \text{heat} \rightleftharpoons \text{PCl}_3(g) + \text{Cl}_2(g) \)
 C. \(\text{NH}_4\text{Cl}(s) + \text{heat} \rightleftharpoons \text{NH}_4^+(aq) + \text{Cl}^-(aq) \)
 D. \(\text{Cl}_2(g) + 2\text{HI}(g) \rightleftharpoons \text{I}_2(g) + 2\text{HCl}(g) + \text{heat} \)
Consider the following reaction:

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g) \quad \Delta H = -2202 \text{ kJ}$$

Which of the following applies to the forward reaction?

<table>
<thead>
<tr>
<th>Entropy</th>
<th>Enthalpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. increases</td>
<td>increases</td>
</tr>
<tr>
<td>B. increases</td>
<td>decreases</td>
</tr>
<tr>
<td>C. decreases</td>
<td>increases</td>
</tr>
<tr>
<td>D. decreases</td>
<td>decreases</td>
</tr>
</tbody>
</table>

Which of the following reactions results in an entropy increase?

A. $2C(s) + O_2(g) \rightarrow 2CO(g)$
B. $N_2(g) + 2H_2(g) \rightarrow N_2H_4(l)$
C. $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$
D. $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$

In an endothermic equilibrium system, the
A. minimum enthalpy and the maximum entropy both favour products.
B. minimum enthalpy and the maximum entropy both favour reactants.
C. minimum enthalpy favours products and the maximum entropy favours reactants.
D. minimum enthalpy favours reactants and the maximum entropy favours products.

Chemical systems tend to move toward positions of
A. minimum enthalpy and maximum entropy.
B. maximum enthalpy and minimum entropy.
C. minimum enthalpy and minimum entropy.
D. maximum enthalpy and maximum entropy.

Consider the enthalpy and entropy changes in the following:

$$C_2H_2(g) + H_2(g) \rightarrow C_2H_4(g) \quad \Delta H = -175 \text{ kJ}$$

Which of the following statements is correct?
A. No reaction occurs because both the enthalpy and entropy factors favour the reactants.
B. The reaction goes to completion because both the enthalpy and entropy factors favour the product.
C. The system reaches equilibrium because the enthalpy factor favours the reactants and the entropy factor favours the product.
D. The system reaches equilibrium because the enthalpy factor favours the product and the entropy factor favours the reactants.

In which of the following reactions does the tendency towards minimum enthalpy and maximum entropy oppose each other?

A. $3O_2(g) \rightarrow 2O_3(g) \quad \Delta H = +285 \text{ kJ}$
B. $\frac{1}{2} N_2(g) + O_2(g) \rightarrow NO_2(g) \quad \Delta H = +34 \text{ kJ}$
C. $2H_2O(g) \rightarrow 2H_2(g) + O_2(g) \quad \Delta H = +484 \text{ kJ}$
D. $P_4(s) + 6H_2(g) \rightarrow 4PH_3(g) \quad \Delta H = +37 \text{ kJ}$
46 D9 In which of the following systems would the tendencies toward minimum enthalpy and maximum entropy be in opposition to each other?
 A. \(\text{Br}_2(l) + \text{heat} \rightarrow \text{Br}_2(g) \)
 B. \(\text{NaOH}(s) \rightarrow \text{Na}^+(aq) + \text{OH}^{-}(aq) + \text{heat} \)
 C. \(2\text{C}_2(g) + 2\text{H}_2(g) \rightarrow \text{C}_2\text{H}_4(g) \quad \Delta H \text{ is positive} \)
 D. \(\text{K}(s) + \text{H}_2\text{O}(l) \rightarrow \text{K}^+(aq) + \text{OH}^{-}(aq) + \frac{1}{2}\text{H}_2(g) \quad \Delta H \text{ is negative} \)

47 D9 In which of the following do both minimum enthalpy and maximum entropy factors favor the reactants?
 A. \(\text{Cl}_2(k) \rightleftharpoons \text{Cl}_2(aq) \quad \Delta H = -25 \text{ kJ} \)
 B. \(\text{C}(s) + \text{H}_2\text{O}(l) \rightleftharpoons \text{CO}(g) + \text{H}_2(g) \quad \Delta H = +131 \text{ kJ} \)
 C. \(2\text{CO}_2(k) + 3\text{H}_2\text{O}(g) \rightleftharpoons \text{C}_2\text{H}_5\text{OH}(l) + 3\text{O}_2(k) \quad \Delta H = +1239 \text{ kJ} \)
 D. \(\text{Na}_2\text{CO}_3(s) + \text{HCl}(aq) \rightleftharpoons 2\text{NaCl}(aq) + \text{CO}_2(g) + \text{H}_2\text{O}(l) \quad \Delta H = -28 \text{ kJ} \)

48 D9 In which of the following will the driving forces of minimum enthalpy and maximum entropy oppose one another?
 A. \(2\text{C}(s) + \text{O}_2(g) \rightarrow 2\text{CO}(g) \quad \Delta H = -221 \text{ kJ} \)
 B. \(2\text{N}_2(g) + \text{O}_2(g) \rightarrow 2\text{N}_2\text{O}(g) \quad \Delta H = +164 \text{ kJ} \)
 C. \(2\text{CO}(g) + \text{O}_2(g) \rightarrow 2\text{CO}_2(g) \quad \Delta H = -566 \text{ kJ} \)
 D. \(4\text{CO}_2(g) + 6\text{H}_2\text{O}(g) \rightarrow 2\text{C}_2\text{H}_6(g) + 7\text{O}_2(g) \quad \Delta H = +3122 \text{ kJ} \)

LE CHATELIER’S PRINCIPLE

49 E2 Consider the following equilibrium:

\[
4\text{NH}_3(g) + 5\text{O}_2(g) \rightleftharpoons 4\text{NO}_2(g) + 6\text{H}_2\text{O}(g) + \text{energy}
\]

Which of the following will cause the equilibrium to shift to the left?
 A. adding \(\text{H}_2\text{O}(g) \)
 B. removing some \(\text{NO}_2(g) \)
 C. increasing the volume
 D. decreasing the temperature

50 E2 Consider the following equilibrium:

\[
2\text{NO}(g) + \text{O}_2(g) \rightleftharpoons 2\text{NO}_2(g) + \text{energy}
\]

When the volume of the container is increased, the equilibrium shifts to the
 A. left and \(K_{eq} \) decreases.
 B. right and \(K_{eq} \) increases.
 C. left and \(K_{eq} \) remains constant.
 D. right and \(K_{eq} \) remains constant.

51 E2 Consider the following equilibrium:

\[
2\text{SO}_2(g) + \text{O}_2(g) \rightleftharpoons 2\text{SO}_3(g) + \text{energy}
\]

Which of the following will cause this equilibrium to shift to the left?
 A. adding a catalyst
 B. adding some \(\text{SO}_2 \)
 C. increasing the volume
 D. decreasing the temperature
E2 Consider the following equilibrium:

\[2\text{NO}_2(g) + \text{Br}_2(g) + \text{energy} \rightleftharpoons 2\text{NOBr}(g) \]

The equilibrium will shift to the left as a result of:
A. adding a catalyst. B. removing NOBr. C. increasing the volume. D. increasing the temperature.

E2 Consider the following equilibrium:

\[\text{N}_2(g) + \text{O}_2(g) + \text{energy} \rightleftharpoons 2\text{NO}(g) \]

When the temperature is increased, the equilibrium shifts to the
A. left and \(K_{eq} \) increases. B. left and \(K_{eq} \) decreases.
C. right and \(K_{eq} \) increases. D. right and \(K_{eq} \) decreases.

E2 Consider the following equilibrium:

\[2\text{NO}_2(g) \rightleftharpoons \text{N}_2\text{O}_4(g) + \text{energy} \]

The equilibrium will shift to the left as a result of
A. adding a catalyst. B. increasing the volume.
C. removing some \(\text{N}_2\text{O}_4 \). D. decreasing the temperature.

E2 Consider the following equilibrium:

\[\text{C}(s) + 2\text{H}_2(g) \rightleftharpoons \text{CH}_4(g) \]

The addition of \(\text{H}_2 \) will cause the equilibrium to shift to the
A. left and \([\text{CH}_4]\) will increase. B. left and \([\text{CH}_4]\) will decrease.
C. right and \([\text{CH}_4]\) will increase. D. right and \([\text{CH}_4]\) will decrease.

E2 Consider the following equilibrium:

\[\text{PCl}_5(g) \rightleftharpoons \text{PCl}_3(g) + \text{Cl}_2(g) \]

The equilibrium concentration of \(\text{PCl}_3 \) will increase when
A. \(\text{PCl}_5 \) is added B. \(\text{Cl}_2 \) is removed
C. a catalyst is added D. the volume of the container is increased.

E2 Consider the following equilibrium:

\[\text{N}_2\text{O}_4(g) \rightleftharpoons 2\text{NO}_2(g) \]

If the volume of the container is decreased, the
A. \(K_{eq} \) decreases B. \([\text{N}_2\text{O}_4]\) increases C. equilibrium does not shift D. equilibrium shifts to the right.

E2 Consider the following equilibrium:

\[\text{NH}_3(g) + \text{HCl}(g) \rightleftharpoons \text{NH}_4\text{Cl}(s) + \text{energy} \]

Which of the following will result in a decrease in the mass of \(\text{NH}_4\text{Cl} \)?
A. adding \(\text{NH}_3 \) B. removing \(\text{HCl} \) C. decreasing the volume D. decreasing the temperature
Consider the following equilibrium:

$$\text{H}_2(g) + \text{I}_2(g) \rightleftharpoons 2\text{HI}(g)$$

The pressure on the system is increased by reducing the volume. When comparing the new equilibrium with the original equilibrium,
A. all concentrations remain constant.
B. the concentrations of all species have increased.
C. reactant concentrations have increased while product concentrations have decreased.
D. reactant concentrations have decreased while product concentrations have increased.

Consider the rate diagram below for the following reaction:

$$2\text{HI}(g) \rightleftharpoons \text{H}_2(g) + \text{I}_2(g)$$

Which of the following occurs at time t_1?
A. addition of H_2
B. addition of HI
C. addition of a catalyst
D. a decrease in volume

Given the following system:

$$2\text{CrO}_4^{2-}_{(aq)} + 2\text{H}^+_{(aq)} \rightleftharpoons \text{Cr}_2\text{O}_7^{2-}_{(aq)} + \text{H}_2\text{O}(c)$$

Which of the following chemicals, when added to the above system at equilibrium, would result in a decrease in $[\text{CrO}_4^{2-}]$?
A. NaOH
B. HNO$_3$
C. Na$_2$CrO$_4$
D. Na$_2$Cr$_2$O$_7$

Consider the following equilibrium:

$$\text{SO}_2(g) + \text{NO}_2(g) \rightleftharpoons \text{SO}_3(g) + \text{NO}(g) + \text{energy}$$

The equilibrium does not shift with a change in the

Consider the following equilibrium:

$$\text{SO}_2\text{Cl}_2(g) + \text{energy} \rightleftharpoons \text{SO}_2(g) + \text{Cl}_2(g)$$

When the temperature is decreased, the equilibrium shifts
A. left and $[\text{SO}_2\text{Cl}_2]$ increases. B. left and $[\text{SO}_2\text{Cl}_2]$ decreases.

Consider the following equilibrium:

$$\text{N}_2\text{O}_4(g) + 58 \text{kJ} \rightleftharpoons 2\text{NO}_2(g)$$

The equilibrium shifts right when
A. NO_2 is added B. N_2O_4 is removed
C. the temperature is decreased D. the volume of the system is increased.
Consider the following equilibrium:

\[\text{CH}_4(g) + \text{H}_2\text{O}(g) + \text{heat} \rightleftharpoons \text{CO}(g) + 3\text{H}_2(g) \]

In which of the following will both stresses shift the equilibrium right?
A. a decrease in temperature and a decrease in volume
B. an increase in temperature and a decrease in volume
C. a decrease in temperature and an increase in volume
D. an increase in temperature and an increase in volume

Consider the following equilibrium:

\[2\text{HI}(g) \rightleftharpoons \text{H}_2(g) + \text{I}_2(g) \quad \Delta H = -68 \text{ kJ} \]

Which of the following would cause the equilibrium to shift right?
A. Increasing the volume. B. Decreasing the volume.
C. Increasing the temperature. D. Decreasing the temperature.

Consider the following equilibrium:

\[2\text{SO}_2(g) + \text{O}_2(g) \rightleftharpoons 2\text{SO}_3(g) \]

Which of the following will shift the equilibrium to the right?
I. adding more O\(_2\)
II. adding more SO\(_3\)
III. adding a catalyst
A. I only B. III only C. I and II only D. II and III only

Consider the following equilibrium:

\[2\text{HI}(g) \rightleftharpoons \text{H}_2(g) + \text{I}_2(g) \]

At constant temperature and volume, more I\(_2\) is added to the above equilibrium. A new state of equilibrium results from a shift to the
A. left with a net decrease in [H\(_2\)]. B. left with a net increase in [H\(_2\)].
C. right with a net increase in [H\(_2\)]. D. right with a net decrease in [H\(_2\)].

When the temperature of an equilibrium system is increased, the equilibrium always shifts to favour the

Consider the following equilibrium:

\[\text{N}_2(g) + 3\text{H}_2(g) \rightleftharpoons 2\text{NH}_3(g) + 92 \text{ kJ} \]

In which of the following will both changes shift the equilibrium right?
A. An increase in volume and a decrease in temperature.
B. An increase in volume and an increase in temperature.
C. A decrease in volume and a decrease in temperature.
D. A decrease in volume and an increase in temperature.

Consider the following equilibrium:

\[\text{H}_2(g) + \text{CO}_2(g) \rightleftharpoons \text{CO}(g) + \text{H}_2\text{O}(g) \quad \Delta H = +41 \text{ kJ} \]

The temperature of the above equilibrium system is increased while kept at a constant volume. A new state of equilibrium is established in which there is
A. an increase in [CO] and a decrease in \(K_{eq}\) B. an increase in [CO] and an increase in \(K_{eq}\)
C. an increase in [CO\(_2\)] and a decrease in \(K_{eq}\) D. an increase in [CO\(_2\)] and an increase in \(K_{eq}\)
Consider the following equilibrium:

\[2\text{SO}_3(g) \rightleftharpoons 2\text{SO}_2(g) + \text{O}_2(g) \]

The volume of the system is decreased at a constant temperature. A new state of equilibrium is established by a shift of the original equilibrium to the

A. left and [SO\(_3\)] increases.
B. right and [SO\(_3\)] decreases.
C. left and [SO\(_3\)] remains unchanged.
D. right and [SO\(_3\)] remains unchanged.

Consider the following equilibrium system:

\[\text{NH}_3(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{NH}_4^+(aq) + \text{OH}^{-}(aq) \]

Which of the following when added to the above equilibrium system, would cause an increase in [OH\(^-\)]?

A. NH\(_3\)
B. H\(_2\)O
C. NH\(_4^+\)
D. HCl

Consider the following graph which relates to this equilibrium:

Which of the following caused the changes in the concentrations at time \(t \)?

A. addition of N\(_2\)
B. removal of H\(_2\)
C. decrease in temperature
D. decrease in reaction volume

Consider the following equilibrium:

\[\text{C(s)} + 2\text{H}_2(g) \rightleftharpoons \text{CH}_4(g) + 74 \text{ kJ} \]

When a small amount of solid C is added to the system,

A. [H\(_2\)] decreases
B. [CH\(_4\)] increases.
C. the temperature increases
D. all concentrations remain constant.

Consider the following equilibrium system:

\[\text{CO}_2(g) + \text{H}_2(g) \rightleftharpoons \text{CO}(g) + \text{H}_2\text{O}(g) \]

Which of the following when added to the system above would result in a net decrease in [H\(_2\)O]?

A. CO\(_2\)
B. H\(_2\)
C. CO
D. H\(_2\)O

Which of the following reactions will shift left when pressure is increased and when temperature is decreased?

A. \(\text{N}_2(g) + 2\text{O}_2(g) \rightleftharpoons 2\text{NO}_2(g) \)
B. \(\text{N}_2(g) + 3\text{H}_2(g) \rightleftharpoons 2\text{NH}_3(g) + \text{heat} \)
C. \(\text{CH}_4(g) + \text{H}_2\text{O}(g) \rightleftharpoons \text{CO}(g) + 3\text{H}_2(g) + \text{heat} \)
D. \(\text{CS}_2(g) + 4\text{H}_2(g) \rightleftharpoons \text{CH}_4(g) + 2\text{H}_2\text{S}(g) + \text{heat} \)

Consider the following equilibrium system:

\[\text{FeO}(s) + \text{H}_2(g) \rightleftharpoons \text{Fe}(s) + \text{H}_2\text{O}(g) \]

Which one of the following statements describes the effect that a decrease in volume would have on the position of equilibrium and the [H\(_2\)] in the above system?

A. No shift, [H\(_2\)] increases.
B. Shift right, [H\(_2\)] increases.
C. Shift right, [H\(_2\)] decreases.
D. No shift, [H\(_2\)] remains constant.
Consider the following equilibrium system:

\[\text{CaCO}_3(s) \leftrightharpoons \text{CaO}(s) + \text{CO}_2(g) \]

Which one of the following changes would cause the above system to shift left?

A. Add more CaO. B. Remove CaCO_3 C. Decrease volume D. Increase surface area of CaO.

Consider the following concentration versus time graph for the equilibrium:

\[\text{N}_2\text{O}_4(g) \leftrightharpoons 2\text{NO}_2(g) \]

At time = “t”, which one of the following stresses occurred?

A. Catalyst was added.
B. Pressure was changed.
C. Temperature was changed.
D. Concentration of NO_2 was changed.

Consider the following equilibrium:

\[\text{H}_2(g) + \text{I}_2(g) \leftrightharpoons 2\text{HI}(g) \]

Which graph represents what happens when some HI is removed and a new equilibrium is established?

Consider the following equilibrium:

\[\text{CO}(g) + \text{H}_2\text{O}(g) \leftrightharpoons \text{CO}_2(g) + \text{H}_2(g) \quad \Delta H = -41 \text{ kJ} \]

What will cause a shift in the equilibrium?

A. adding a catalyst B. changing volume C. adding an inert gas D. changing temperature

Consider the following equilibrium:

\[\text{CH}_3\text{COOH}_{(aq)} + \text{H}_2\text{O}(l) \leftrightharpoons \text{CH}_3\text{COO}^-(aq) + \text{H}_3\text{O}^+(aq) + \text{hcat} \]

A stress was applied at time \(t_1 \) and the data was plotted on the following graph:

The stress that was imposed at time \(t_1 \) is the result of:

A. the addition of HCl.
B. decreasing the temperature.
C. the addition of NaCH COO \(3 \).
D. increasing the volume of the container.
Consider the following equilibrium:

\[2\text{CO}_2(g) + \text{O}_2(g) \rightleftharpoons 2\text{CO}_2(g) + \text{energy} \]

Some CO₂ is added to the equilibrium system at constant volume and a new equilibrium is established. Compared to the original equilibrium, the rates of the forward and reverse reactions for the new equilibrium have:

<table>
<thead>
<tr>
<th>Forward Rate</th>
<th>Reverse Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. increased</td>
<td>increased</td>
</tr>
<tr>
<td>B. not changed</td>
<td>increased</td>
</tr>
<tr>
<td>C. decreased</td>
<td>increased</td>
</tr>
<tr>
<td>D. not changed</td>
<td>not changed</td>
</tr>
</tbody>
</table>

Consider the following equilibrium:

\[\text{H}_2(g) + \text{I}_2(g) \rightleftharpoons 2\text{HI}(g) \]

The volume of the equilibrium system is increased and a new equilibrium is established. Compared to the rates in the original equilibrium, which of the following describes the rates of the forward and reverse reactions in the new equilibrium?

<table>
<thead>
<tr>
<th>Forward Rate</th>
<th>Reverse Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. decreased</td>
<td>decreased</td>
</tr>
<tr>
<td>B. increased</td>
<td>increased</td>
</tr>
<tr>
<td>C. decreased</td>
<td>increased</td>
</tr>
<tr>
<td>D. remained constant</td>
<td>remained constant</td>
</tr>
</tbody>
</table>

Consider the following equilibrium:

\[4\text{HCl}(g) + \text{O}_2(g) \rightleftharpoons 2\text{H}_2\text{O}(g) + 2\text{Cl}_2(g) + \text{energy} \]

The temperature of the equilibrium system is increased and a new equilibrium is established. The rates of the forward and reverse reactions for the new equilibrium compared to the original equilibrium have:

<table>
<thead>
<tr>
<th>Forward Rate</th>
<th>Reverse Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. increased</td>
<td>increased</td>
</tr>
<tr>
<td>B. decreased</td>
<td>not changed</td>
</tr>
<tr>
<td>C. decreased</td>
<td>increased</td>
</tr>
<tr>
<td>D. not changed</td>
<td>increased</td>
</tr>
</tbody>
</table>

Consider the following equilibrium reaction:

\[\text{PCl}_5(g) + \text{energy} \rightleftharpoons \text{PCl}_3(g) + \text{Cl}_2(g) \]

The temperature of this system is decreased. What is the immediate effect on the reaction rates?

A. Both forward and reverse rates increase.
B. Both forward and reverse rates decrease.
C. Forward rate decreases while reverse rate increases.
D. Forward rate increases while reverse rate decreases.

An equilibrium system shifts left when the temperature is increased. The forward reaction is:

A. exothermic and ΔH is positive.
B. exothermic and ΔH is negative.
C. endothermic and ΔH is positive.
D. endothermic and ΔH is negative.

An equilibrium system shifts left when the rate of the forward reaction is equal to the rate of the reverse reaction.
B. rate of the forward reaction is less than the rate of the reverse reaction.
C. rate of the forward reaction is greater than the rate of the reverse reaction.
D. the rate of the forward reaction and the rate of the reverse reaction are constant.

Addition of a catalyst to an equilibrium system:

A. increases the value of K_
B. increases the yield of products.
C. has no effect on the rates of reaction.
D. increases the rate of formation of both reactants and products.
Consider the following equilibrium:

\[2\text{SO}_2(g) + \text{O}_2(g) \rightleftharpoons 2\text{SO}_3(g) \quad \Delta H = -198 \text{ kJ} \]

There will be no shift in this equilibrium when
A. more \text{O}_2 is added.
B. a catalyst is added.
C. the volume is increased.
D. the temperature is increased.

Consider the following equilibrium system:

\[2\text{SO}_2(g) + \text{O}_2(g) \rightleftharpoons 2\text{SO}_3(g) \quad \Delta H = -197 \text{ kJ} \]

Which of the following will not shift the equilibrium to the right?
A. adding more \text{O}_2
B. adding a catalyst
C. increasing the pressure
D. lowering the temperature

A catalyst is added to a system already at equilibrium. How are the forward and reverse reaction rates affected by the addition of the catalyst?

<table>
<thead>
<tr>
<th></th>
<th>FORWARD RATE</th>
<th>REVERSE RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>increases</td>
<td>increases</td>
</tr>
<tr>
<td>B.</td>
<td>increases</td>
<td>remains constant</td>
</tr>
<tr>
<td>C.</td>
<td>remains constant</td>
<td>decreases</td>
</tr>
<tr>
<td>D.</td>
<td>remains constant</td>
<td>remains constant</td>
</tr>
</tbody>
</table>

Ethene, \text{C}_2\text{H}_4, can be produced in the following industrial system:

\[\text{C}_2\text{H}_6(g) + \text{energy} \rightleftharpoons \text{C}_2\text{H}_4(g) + \text{H}_2(g) \]

The conditions that are necessary to maximize the equilibrium yield of \text{C}_2\text{H}_4 are
A. low temperature and low pressure.
B. low temperature and high pressure.
C. high temperature and low pressure.
D. high temperature and high pressure.

Certain conditions provide less than 10% yield of \text{NH}_3 at equilibrium. Which of the following describes this equilibrium?

<table>
<thead>
<tr>
<th></th>
<th>(K_{eq})</th>
<th>EQUILIBRIUM POSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>large</td>
<td>favours products</td>
</tr>
<tr>
<td>B.</td>
<td>small</td>
<td>favours products</td>
</tr>
<tr>
<td>C.</td>
<td>large</td>
<td>favours reactants</td>
</tr>
<tr>
<td>D.</td>
<td>small</td>
<td>favours reactants</td>
</tr>
</tbody>
</table>

Consider the following equilibrium system:

\[\text{N}_2(g) + 3\text{H}_2(g) \rightleftharpoons 2\text{NH}_3(g) + \text{energy} \]

Which of the following sets of conditions will favor the formation of the product?
A. low pressure and low temperature
B. low pressure and high temperature
C. high pressure and low temperature
D. high pressure and high temperature

Consider the following equilibrium:

\[\text{Cl}_2\text{O}_7(g) + 8\text{H}_2(g) \rightleftharpoons 2\text{HCl}(g) + 7\text{H}_2\text{O}(g) \]

Which of the following would increase the number of moles of \text{HCl}?
A. increase \([\text{H}_2\text{O}]\)
B. increase \([\text{Cl}_2\text{O}_7]\)
C. increase total pressure
D. increase volume of the system
Consider the following equilibrium:

$$2\text{NO}_2(g) \rightleftharpoons \text{N}_2\text{O}_4(g) + \text{energy}$$

The number of moles of NO$_2$ at equilibrium could be increased by
A. adding N$_2$O$_4$ B. adding a catalyst.
C. decreasing the temperature D. decreasing the volume by increasing the pressure.

Ammonia, NH$_3$, is produced by the following reaction:

$$\text{N}_2(g) + 3\text{H}_2(g) \rightleftharpoons 2\text{NH}_3(g) + \text{energy}$$

Which of the following would result in the highest concentration of ammonia at equilibrium?
A. increasing the temperature and increasing the pressure
B. decreasing the temperature and increasing the pressure
C. increasing the temperature and decreasing the pressure
D. decreasing the temperature and decreasing the pressure

Methanol, CH$_3$OH, can be produced by the following:

$$\text{CO}(g) + 2\text{H}_2(g) \rightleftharpoons \text{CH}_3\text{OH}(g) + \text{energy}$$

The conditions that are necessary to maximize the equilibrium yield of CH$_3$OH are
A. low temperature and low pressure. B. high temperature and low pressure.
C. low temperature and high pressure. D. high temperature and high pressure.

Which of the following reactions most favours products?

<table>
<thead>
<tr>
<th>REACTION</th>
<th>K_{eq}</th>
<th>A. I</th>
<th>B. II</th>
<th>C. III</th>
<th>D. IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$2\text{SO}_2(g) + \text{O}_2(g) \rightleftharpoons 2\text{SO}_3(g)$</td>
<td>2.6×10^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>$2\text{NO}(g) + \text{O}_2(g) \rightleftharpoons 2\text{NO}_2(g)$</td>
<td>6.4×10^5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>$2\text{CO}(g) + \text{O}_2(g) \rightleftharpoons 2\text{CO}_2(g)$</td>
<td>2.5×10^{15}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>$2\text{H}_2(g) + \text{O}_2(g) \rightleftharpoons 2\text{H}_2\text{O}(g)$</td>
<td>1.7×10^{27}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An indication that an equilibrium system favours the products is a
A. large K_{eq}. B. positive ΔH. C. one step mechanism. D. low activation energy.

Which of the following reactions most favors the reactants?

A. $\text{CH}_4(g) \rightleftharpoons 2\text{H}_2(g) + \text{C}(s)$ $K_{eq} = 1.2 \times 10^{-9}$
B. $\text{SbCl}_5(g) \rightleftharpoons \text{SbCl}_3(g) + \text{Cl}_2(g)$ $K_{eq} = 2.5 \times 10^{-2}$
C. $\text{N}_2\text{O}_4(g) \rightleftharpoons 2\text{NO}_2(g)$ $K_{eq} = 4.5 \times 10^{-1}$
D. $\text{C}(s) + \text{CO}_2(g) \rightleftharpoons 2\text{CO}(g)$ $K_{eq} = 1.4 \times 10^{1}$
Which equation has the largest value of K_{eq}?

A. $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ \hspace{1cm} \Delta H = 21 \text{ kJ}$

B. $C_2H_6(g) \rightleftharpoons 2C(g) + 3H_2(g)$ \hspace{1cm} \Delta H = 83 \text{ kJ}$

C. $H_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons H_2O(g)$ \hspace{1cm} \Delta H = -240 \text{ kJ}$

D. $Ca(s) + 2H_2O(l) \rightleftharpoons Ca(OH)_{2(aq)} + H_2(g)$ \hspace{1cm} \Delta H = -240 \text{ kJ}$

Consider the following equilibrium:

$$2NO(g) \rightleftharpoons N_2(g) + O_2(g) \hspace{1cm} K_{eq} = 2.1 \times 10^{30}$$

The value of the equilibrium constant indicates that the

A. $[NO]^2 < [N_2][O_2]$
B. $[NO]^2 > [N_2][O_2]$
C. $[NO] = [N_2][O_2]$
D. $[NO] > [N_2][O_2]$

Which of the following equilibrium systems most favours the products?

A. $Cl_2(g) \rightleftharpoons 2Cl(g) \hspace{1cm} K_{eq} = 6.4 \times 10^{-39}$

B. $Cl_2(g) + 2NO(g) \rightleftharpoons 2NOCl(g) \hspace{1cm} K_{eq} = 3.7 \times 10^8$

C. $Cl_2(g) + 2NO_2(g) \rightleftharpoons 2NOCl(g) \hspace{1cm} K_{eq} = 1.8$

D. $2HCl(g) \rightleftharpoons H_2(g) + Cl_2(g) \hspace{1cm} K_{eq} = 2.0 \times 10^{-7}$

Consider the following equilibrium:

$$COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$$

At equilibrium in a 1.0 L container, there are 3.0 mol COCl$_2$, 0.49 mol CO and 0.49 mol Cl$_2$. At constant temperature the volume of the above system is decreased to 0.50 L. When equilibrium is reestablished the

A. concentrations of all three gases have increased.
B. concentrations of all three gases have decreased.
C. $[COCl_2]$ has increased and $[CO]$ and $[Cl_2]$ have decreased.
D. $[COCl_2]$ has decreased and $[CO]$ and $[Cl_2]$ have increased.

Consider the following equilibrium:

$$2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$$

In a 1.0 L container at equilibrium there are 1.0 mol NOCl, 0.70 mol NO and 0.49 mol Cl$_2$. At constant temperature and volume, 0.10 mol NOCl is added. The concentrations in the “new” equilibrium in comparison to the concentrations in the “old” equilibrium are:

<table>
<thead>
<tr>
<th></th>
<th>[NOCl]</th>
<th>[NO]</th>
<th>[Cl$_2$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>new = old</td>
<td>new = old</td>
<td>new = old</td>
</tr>
<tr>
<td>B.</td>
<td>new > old</td>
<td>new > old</td>
<td>new > old</td>
</tr>
<tr>
<td>C.</td>
<td>new < old</td>
<td>new < old</td>
<td>new > old</td>
</tr>
<tr>
<td>D.</td>
<td>new < old</td>
<td>new > old</td>
<td>new > old</td>
</tr>
</tbody>
</table>
Consider the following equilibrium:

$$2\text{H}_2\text{O}_\text{(g)} \rightleftharpoons 2\text{H}_2\text{(g)} + \text{O}_2\text{(g)}$$

When 0.1010 mol H$_2$O is placed in a 1.000 L container, equilibrium is established. The equilibrium concentration of O$_2$ is 0.0010 mol/L. The equilibrium concentrations of H$_2$O and H$_2$ are

<table>
<thead>
<tr>
<th>[H$_2$O]</th>
<th>[H$_2$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 0.0990</td>
<td>0.0020</td>
</tr>
<tr>
<td>B. 0.1000</td>
<td>0.0010</td>
</tr>
<tr>
<td>C. 0.1005</td>
<td>0.0005</td>
</tr>
<tr>
<td>D. 0.1010</td>
<td>0.0020</td>
</tr>
</tbody>
</table>

Consider the following equilibrium:

$$\text{COCl}_2\text{(g)} \rightleftharpoons \text{CO} \text{(g)} + \text{Cl}_2\text{(g)} \quad K_{eq} = 8.1 \times 10^{-4}$$

For the above system:

A. $[\text{COCl}_2] < [\text{CO}][\text{Cl}_2]$
B. $[\text{COCl}_2] = [\text{CO}][\text{Cl}_2]$
C. $[\text{COCl}_2] > [\text{CO}][\text{Cl}_2]$
D. $[\text{COCl}_2] = \frac{1}{[\text{CO}][\text{Cl}_2]}$

Consider the following equilibrium:

$$2\text{O}_2\text{(g)} + \text{N}_2\text{(g)} \rightleftharpoons \text{N}_2\text{O}_4\text{(g)}$$

When 2.0 mol of O$_2$ and 3.0 mol of N$_2$ were placed in a 10.0 L container at 25° C, the value of $K_{eq} = 0.90$. If the same number of moles of reactant were placed in a 5.0 L container at 25° C, the equilibrium constant would be

A. 0.011
B. 0.45
C. 0.90
D. 1.80

Consider the following equilibrium system at 900° C:

$$\text{H}_2\text{O}_\text{(g)} + \text{CO}_\text{(g)} \rightleftharpoons \text{H}_2\text{(g)} + \text{CO}_2\text{(g)}$$

Initially 5.0 moles of H$_2$O and 4.0 moles of CO were reacted. At equilibrium, it is found that 2.0 moles of H$_2$ are present. How many moles of H$_2$O remain in the mixture?

A. 1.0 moles
B. 2.0 moles
C. 3.0 moles
D. 4.0 moles

Consider the following equilibrium system:

$$\text{CO}_2\text{(g)} + \text{H}_2\text{(g)} \rightleftharpoons \text{CO}_\text{(g)} + \text{H}_2\text{O}_\text{(g)}$$

1.00 mole of CO$_2$ and 2.00 moles of H$_2$(g) are placed into a 2.00 litre container. At equilibrium, the [CO] = 0.31 mol/L. Based on this data, the equilibrium [CO$_2$] is

A. 0.19 M
B. 0.31 M
C. 0.38 M
D. 0.69 M

Consider the following equilibrium:

$$\text{H}_2\text{(g)} + \text{I}_2\text{(g)} \rightleftharpoons 2\text{HI}_\text{(g)} \quad K_{eq} = 50.0$$

What is the value K_{eq} for the reaction rewritten as:

$$2\text{HI}_\text{(g)} \rightleftharpoons \text{H}_2\text{(g)} + \text{I}_2\text{(g)} \quad K_{eq} = ?$$

A. -50.0
B. 0.0200
C. 25.0
D. 50.0
Consider the following equilibrium:

\[2\text{Fe}_2\text{O}_3(s) + 3\text{H}_2\text{O}(g) \rightleftharpoons \text{Fe}_2\text{O}_3(s) + 3\text{H}_2(g) \]

The equilibrium constant expression is………

A. \(K_{eq} = \frac{[\text{Fe}_2\text{O}_3] [\text{H}_2]^3}{[\text{Fe}]^2 [\text{H}_2\text{O}]^3} \)
B. \(K_{eq} = \frac{[\text{Fe}_2\text{O}_3] [3\text{H}_2]}{2[\text{Fe}] [3\text{H}_2\text{O}]} \)
C. \(K_{eq} = \frac{[\text{H}_2]^3}{[\text{H}_2\text{O}]^3} \)
D. \(K_{eq} = [\text{H}_2]^3 \)

Consider the following equilibrium:

\[2\text{H}_2\text{S}_2(g) \rightleftharpoons 2\text{H}_2(g) + \text{S}_2(g) \]

At equilibrium, \([\text{H}_2\text{S}] = 0.50 \text{ mol/L, } [\text{H}_2] = 0.10 \text{ mol/L and } [\text{S}_2] = 0.40 \text{ mol/L.} \]

The value of \(K_{eq} \) is calculated using the ratio…………

A. \(\frac{(0.10)(0.40)}{(0.50)} \)
B. \(\frac{(0.10)^2(0.40)}{(0.50)^2} \)
C. \(\frac{0.50}{(0.10)(0.50)} \)
D. \(\frac{(0.50)^2}{(0.10)^2(0.40)} \)

For which of the following equilibria does \(K_{eq} = [\text{O}_2] \)?

A. \(\text{O}_2(l) \rightleftharpoons \text{O}_2(g) \)
B. \(2\text{O}_3(g) \rightleftharpoons 3\text{O}_2(g) \)
C. \(2\text{H}_2\text{O}(l) \rightleftharpoons 2\text{H}_2(g) + \text{O}_2(g) \)
D. \(2\text{Hg}(s) + \text{O}_2(g) \rightleftharpoons 2\text{HgO}(s) \)

Which of the following statements is correct?
A. \(K_{eq} \) is the ratio of [products] to [reactants].
B. \(K_{eq} \) determines how fast a reaction is completed.
C. A large \(K_{eq} \) value indicates that reactants are favoured.
D. A small \(K_{eq} \) value indicates that products are favoured.

Consider the following equilibrium system:

\[3\text{O}_2(g) \rightleftharpoons 2\text{O}_3(g) \quad K_{eq} = 1 \]

Which equation compares the concentration of oxygen and ozone?

A. \(\left[\text{O}_2\right] = \left[\text{O}_3\right]^2 \)
B. \(\left[\text{O}_2\right] = \left[\text{O}_3\right] \)
C. \(\left[\text{O}_2\right] = \left[\text{O}_3\right]^3 \)
D. \(\left[\text{O}_2\right]^2 = \left[\text{O}_3\right] \)
An equal number of moles of \(\text{I}_2\text{(g)} \) and \(\text{Br}_2\text{(g)} \) are placed into a closed container and allowed to establish the following equilibrium:

\[
\text{I}_2\text{(g)} + \text{Br}_2\text{(g)} \rightleftharpoons 2\text{IBr}(g) \quad K_{eq} = 280
\]

Which one of the following relates \([\text{IBr}]\) to \([\text{I}_2]\) at equilibrium?

A. \([\text{I}_2] = [\text{IBr}]\)
B. \([\text{I}_2] < [\text{IBr}]\)
C. \([\text{I}_2] = 2[\text{IBr}]\)
D. \([\text{I}_2] = 280[\text{IBr}]\)

Consider the following reaction:

\[
2\text{Hg}_\text{(g)} + \text{O}_2\text{(g)} \rightleftharpoons 2\text{HgO}_\text{(s)}
\]

The equilibrium constant expression for the reaction is

A. \(K_{eq} = \frac{1}{[\text{Hg}]^2[\text{O}_2]}\)
B. \(K_{eq} = [\text{Hg}]^2[\text{O}_2]\)
C. \(K_{eq} = \frac{[\text{HgO}]^2}{[\text{Hg}]^2[\text{O}_2]}\)
D. \(K_{eq} = \frac{[2\text{HgO}]}{[2\text{Hg}]_\text{(s)}[\text{O}_2]}\)

Consider the following reaction:

\[
2\text{H}_2\text{(g)} + \text{O}_2\text{(g)} \rightleftharpoons 2\text{H}_2\text{O}_\text{(l)}
\]

What is the equilibrium constant expression for the reaction?

A. \(K_{eq} = [\text{H}_2]^2[\text{O}_2]\)
B. \(K_{eq} = \frac{[\text{H}_2]^2[\text{O}_2]}{[\text{H}_2\text{O}]^2}\)
C. \(K_{eq} = \frac{[\text{H}_2\text{O}]^2}{[\text{H}_2]^2[\text{O}_2]}\)
D. \(K_{eq} = \frac{1}{[\text{H}_2]^2[\text{O}_2]}\)

Consider the following equilibrium:

\[
2\text{SO}_2\text{(g)} + \text{O}_2\text{(g)} \rightleftharpoons 2\text{SO}_3\text{(g)}
\]

The equilibrium expression is:

A. \(K_{eq} = \frac{[\text{SO}_3]}{[\text{SO}_2][\text{O}_2]}\)
B. \(K_{eq} = \frac{[\text{SO}_3]^2}{[\text{SO}_2]^2[\text{O}_2]}\)
C. \(K_{eq} = \frac{[\text{SO}_2][\text{O}_2]}{[\text{SO}_3]}\)
D. \(K_{eq} = \frac{[\text{SO}_3]^2[\text{O}_2]}{[\text{SO}_2]^2}\)
124 Consider the following equilibrium:

\[
\text{CaO}_\text{(s)} + \text{CO}_2\text{(g)} \rightleftharpoons \text{CaCO}_3\text{(s)}
\]

For this reaction,

A. \(K_{eq} = [\text{CO}_2] \)
B. \(K_{eq} = \frac{1}{[\text{CO}_2]} \)
C. \(K_{eq} = \frac{[\text{CaCO}_3]}{[\text{CO}_2][\text{CaO}]} \)
D. \(K_{eq} = \frac{[\text{CO}_2][\text{CaO}]}{[\text{CaCO}_3]} \)

125 Consider the following equilibrium:

\[
\text{MgO}_\text{(s)} + \text{H}_2\text{O}_\text{(g)} \rightleftharpoons \text{Mg(OH)}_2\text{(s)}
\]

The equilibrium constant expression is……

A. \(K_{eq} = [\text{H}_2\text{O}] \)
B. \(K_{eq} = \frac{1}{[\text{H}_2\text{O}]} \)
C. \(K_{eq} = \frac{[\text{Mg(OH)}_2]}{[\text{MgO}]} \)
D. \(K_{eq} = \frac{[\text{Mg(OH)}_2]}{[\text{MgO}][\text{H}_2\text{O}]} \)

126 Consider the following reaction:

\[
2\text{B}_\text{(s)} + 3\text{F}_2\text{(g)} \rightleftharpoons 2\text{BF}_3\text{(g)}
\]

The equilibrium expression is……

A. \(K_{eq} = \frac{[2\text{BF}_3]}{[3\text{F}_2]} \)
B. \(K_{eq} = \frac{[\text{F}_2]^3}{[\text{BF}_3]^2} \)
C. \(K_{eq} = \frac{[\text{BF}_3]^2}{[\text{F}_2]^3} \)
D. \(K_{eq} = \frac{[\text{BF}_3]^2}{[\text{B}]^2[\text{F}_2]} \)

127 Consider the following equilibrium:

\[
2\text{N}_2\text{O}_\text{(g)} + 3\text{O}_2\text{(g)} \rightleftharpoons 4\text{NO}_2\text{(g)}
\]

The equilibrium constant expression is…

A. \(K_{eq} = \frac{[2\text{N}_2\text{O}][3\text{O}_2]}{[4\text{NO}_2]} \)
B. \(K_{eq} = \frac{[\text{N}_2\text{O}]^2[\text{O}_2]^3}{[\text{NO}_2]^4} \)
C. \(K_{eq} = \frac{[4\text{NO}_2]}{[2\text{N}_2\text{O}][3\text{O}_2]} \)
D. \(K_{eq} = \frac{[\text{NO}_2]^4}{[\text{N}_2\text{O}]^2[\text{O}_2]^3} \)
128 \(F_2 \) Given the following equilibrium system:

\[
\text{Br}_2(g) \rightleftharpoons \text{Br}_2(l)
\]

The equilibrium constant expression for the above system is.....

A. \(K_{eq} = \frac{[\text{Br}_2(l)]}{[\text{Br}_2(g)]} \)

B. \(K_{eq} = [\text{Br}_2(g)] \)

C. \(K_{eq} = \frac{1}{[\text{Br}_2(g)]} \)

D. \(K_{eq} = \frac{[\text{Br}_2(g)]}{[\text{Br}_2(g)]} \)

129 \(F_2 \) Consider the following equilibrium:

\[
4\text{KO}_2(s) + 2\text{H}_2\text{O}(g) \rightleftharpoons 4\text{KOH}(s) + 3\text{O}_2(g)
\]

The equilibrium constant expression is..........

A. \(K_{eq} = \frac{[\text{KOH}]^4[\text{O}_2]^3}{[\text{KO}_2]^4[\text{H}_2\text{O}]^2} \)

B. \(K_{eq} = \frac{[\text{O}_2]^3}{[\text{H}_2\text{O}]^2} \)

C. \(K_{eq} = \frac{[\text{KO}_2]^4[\text{H}_2\text{O}]^2}{[\text{KOH}]^4[\text{O}_2]^3} \)

D. \(K_{eq} = \frac{[\text{H}_2\text{O}]^2}{[\text{O}_2]} \)

130 \(F_2 \) Consider the following equilibrium:

\[
\text{2CO}(g) + \text{O}_2(g) \rightleftharpoons 2\text{CO}_2(g)
\]

The ratio used to calculate the equilibrium constant is

A. \(\frac{[\text{2CO}]^2[\text{O}_2]}{[\text{2CO}_2]^2} \)

B. \(\frac{[\text{2CO}_2]^2}{[\text{2CO}]^2[\text{O}_2]} \)

C. \(\frac{[\text{CO}]^2[\text{O}_2]}{[\text{CO}_2]^2} \)

D. \(\frac{[\text{CO}_2]^2}{[\text{CO}]^2[\text{O}_2]} \)

131 \(F_2 \) Consider the following equilibrium:

\[
\text{I}_2(s) + \text{H}_2\text{O}(l) \rightleftharpoons \text{H}^+(aq) + \text{I}^-(aq) + \text{HOI}(aq)
\]

The equilibrium constant expression for the above system is.....

A. \(K_{eq} = [\text{H}^+][\text{I}^-] \)

B. \(K_{eq} = [\text{H}^+][\text{I}^-][\text{HOI}] \)

C. \(K_{eq} = \frac{[\text{H}^+][\text{I}^-][\text{HOI}]}{[\text{I}_2][\text{H}_2\text{O}]} \)

D. \(K_{eq} = \frac{[\text{H}^+][\text{I}^-][\text{HOI}]}{[\text{H}_2\text{O}]} \)
The equilibrium constant expression for the reaction below is….

\[2 \text{Hg}_2(l) + \text{O}_2(g) \rightleftharpoons 2 \text{HgO}_2(s) \]

A. \(K_{eq} = \frac{1}{[\text{O}_2]} \)
B. \(K_{eq} = [\text{O}_2] \)
C. \(K_{eq} = \frac{[2\text{HgO}_2]}{[\text{O}_2][2\text{Hg}]} \)
D. \(K_{eq} = \frac{[\text{HgO}_2]^2}{[\text{Hg}]^2[\text{O}_2]} \)

Consider the following equilibrium system:

\[\text{SnO}_2(s) + 2\text{CO}_2(g) \rightleftharpoons \text{Sn}(s) + 2\text{CO}_2(g) \]

The equilibrium constant expression for the above system is….

A. \(K_{eq} = \frac{[\text{CO}_2]^2}{[\text{CO}]} \)
B. \(K_{eq} = \frac{[2\text{CO}_2]^2}{[\text{CO}]} \)
C. \(K_{eq} = \frac{[\text{CO}_2]^2}{[\text{CO}][\text{Sn}]} \)
D. \(K_{eq} = \frac{[2\text{CO}_2]^2}{[\text{CO}][\text{SnO}_2]} \)

Consider the following equilibrium constant expression:

\[K_{eq} = [\text{CO}_2] \]

Which one of the following equilibrium systems does the above expression represent?

A. \(\text{CO}_2(g) \rightleftharpoons \text{CO}_2(s) \)
B. \(\text{PbO}_2(s) + \text{CO}_2(g) \rightleftharpoons \text{PbCO}_3(s) \)
C. \(\text{CaCO}_3(s) \rightleftharpoons \text{CaO}_2(s) + \text{CO}_2(g) \)
D. \(\text{H}_2\text{CO}_3(aq) \rightleftharpoons \text{H}_2\text{O}(l) + \text{CO}_2(aq) \)

What is the \(K_{eq} \) expression for

\[\text{Sb}^{3+}(aq) + \text{Cl}^-(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{SbCl}_3(s) + 2\text{H}^+(aq) \]

A. \(K_{eq} = \frac{[\text{H}^+]^2}{[\text{Sb}^{3+}][\text{Cl}^-]} \)
B. \(K_{eq} = \frac{[\text{H}^+]^2}{[\text{SbCl}_3][\text{Cl}^-]} \)
C. \(K_{eq} = \frac{[\text{H}^+]^2}{[\text{Sb}^{3+}][\text{Cl}^-][\text{H}_2\text{O}]} \)
D. \(K_{eq} = \frac{[\text{H}^+]^2}{[\text{Sb}^{3+}][\text{Cl}^-][\text{H}_2\text{O}]} \)
The equilibrium expression for a reaction is……

The reaction could be:

A. \(6\text{H}^+(aq) + \text{BiS}_2(s) \rightleftharpoons 2\text{Bi}^{3+}(aq) + 3\text{H}_2\text{S}(g)\)
B. \(6\text{H}^+(aq) + \text{BiS}_3(s) \rightleftharpoons 2\text{Bi}^{3+}(aq) + 3\text{H}_2\text{S}(g)\)
C. \(2\text{Bi}^{3+}(aq) + 3\text{H}_2\text{S}(aq) \rightleftharpoons \text{BiS}_2(s) + 6\text{H}^+(aq)\)
D. \(2\text{Bi}^{3+}(aq) + 3\text{H}_2\text{S}(aq) \rightleftharpoons \text{BiS}_3(aq) + 6\text{H}^+(aq)\)

What is the \(K_{eq}\) expression for the following reaction?

\(\text{SnO}_2(s) + 2\text{CO}(g) \rightleftharpoons \text{Sn}(s) + 2\text{CO}_2(g)\)

A. \(K_{eq} = \frac{[\text{CO}]}{[\text{CO}_2]}\)
B. \(K_{eq} = \frac{[\text{CO}]}{[\text{CO}_2]^2}\)
C. \(K_{eq} = \frac{[\text{CO}_2]^2}{[\text{CO}]^2}\)
D. \(K_{eq} = \frac{[\text{CO}_2]^2}{[\text{SnO}_2][\text{CO}]^2}\)

What is the \(K_{eq}\) expression for the following equilibrium?

\(3\text{Fe}(s) + 4\text{H}_2\text{O}(g) \rightleftharpoons \text{Fe}_3\text{O}_4(s) + 4\text{H}_2(g)\)

A. \(K_{eq} = \frac{[\text{H}_2]^4}{[\text{H}_2\text{O}]}\)
B. \(K_{eq} = \frac{[\text{H}_2]}{[\text{H}_2\text{O}]}\)
C. \(K_{eq} = \frac{[\text{H}_2]^4}{[\text{H}_2\text{O}]}\)
D. \(K_{eq} = \frac{[\text{Fe}_3\text{O}_4][\text{H}_2]^4}{[\text{Fe}]^3[\text{H}_2\text{O}]}\)

Consider the following equilibrium:

\(2\text{NO}(g) + 2\text{H}_2(g) \rightleftharpoons \text{N}_2(g) + 2\text{H}_2\text{O}(g)\)

\(K_{eq} = 1.3 \times 10^2\)

A 1.0 L container is initially filled with 1.0 mol of each of the species in the reaction. The equilibrium shifts to the:

A. left because Trial \(K_{eq} > K_{eq}\)
B. left because Trial \(K_{eq} < K_{eq}\)
C. right because Trial \(K_{eq} > K_{eq}\)
D. right because Trial \(K_{eq} < K_{eq}\)

Identify the equilibrium system that least favors the formation of products.

A. \(2\text{HgO}(s) \rightleftharpoons 2\text{Hg}(l) + \text{O}_2(g)\) \(K_{eq} = 1.2 \times 10^{-22}\)
B. \(\text{CH}_3\text{COOH}(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{H}_3\text{O}^+(aq) + \text{CH}_3\text{COO}^-(aq)\) \(K_{eq} = 1.8 \times 10^{-5}\)
C. \(2\text{NO}(g) + \text{O}_2(g) \rightleftharpoons 2\text{NO}_2(g)\) \(K_{eq} = 6.5 \times 10^4\)
D. \(\text{H}_2(g) + \text{Cl}_2(g) \rightleftharpoons 2\text{HCl}(g)\) \(K_{eq} = 1.8 \times 10^{33}\)
141 **F3** Products are favoured in an equilibrium reaction when the
A. reaction is endothermic B. equilibrium constant is large.
C. macroscopic properties are constant D. activation energy of the forward reaction is high.

142 **F3** Hydrogen gas dissociates into atomic hydrogen as follows:
\[\text{H}_2(g) \rightleftharpoons 2\text{H}_2(g) \]

The value of the equilibrium constant for the above system indicates that
A. the reaction rate is very slow B. the equilibrium is exothermic.
C. reactants are favoured at equilibrium D. a catalyst is necessary to establish equilibrium.

143 **F3** For an exothermic reaction at equilibrium, an increase in temperature will cause the equilibrium to shift
A. left and \(K_{eq} \) increases. B. left and \(K_{eq} \) decreases.
C. right and \(K_{eq} \) increases D. right and \(K_{eq} \) decreases.

144 **F4** The value of \(K_{eq} \) changes when
A. a catalyst is added. B. the temperature changes.
C. the surface area changes. D. the concentration of reactants changes.

145 **F4** The relationship between \(K_{eq} \) and the pressure of a gaseous equilibrium at constant temperature can be described by

146 **F4** Which of the following best describes the relationship between \(K_{eq} \) and temperature for an endothermic reaction?

147 **F4** Consider the following equilibrium:
\[\text{energy} + \text{SbCl}_5(g) \rightleftharpoons \text{SbCl}_3(g) + \text{Cl}_2(g) \]

The \(K_{eq} \) decreases when
A. SbCl\(_5\) is added. B. SbCl\(_5\) is removed.
C. the temperature is increased. D. the temperature is decreased.

148 **F4** The value of \(K_{eq} \) can be changed by
A. adding a catalyst. B. changing the temperature.
C. changing the reactant concentration. D. changing the volume of the container.
Consider the following equilibrium:

\[
\text{CaCO}_3(s) + 556 \text{ kJ} \; \rightleftharpoons \; \text{CaO}_s + \text{CO}_2(g)
\]

The value of the equilibrium constant will increase when
A. CO\textsubscript{2} is added.
B. CO\textsubscript{2} is removed.
C. the temperature is increased.
D. the temperature is decreased.

Consider the following equilibrium:

\[
2\text{NO}_2(g) + \text{Cl}_2(g) \; \rightleftharpoons \; 2\text{NOCl}_g
\]

At constant temperature and volume, Cl\textsubscript{2} is added to the above equilibrium system. As equilibrium reestablishes, the
A. \(K_{eq}\) will increase.
B. \(K_{eq}\) will decrease.
C. [NO] will increase.
D. [NOCl] will increase.

In an exothermic equilibrium reaction involving only gases, the value of \(K_{eq}\) can be decreased by
A. adding some reactant gas.
B. removing some reactant gas.
C. increasing the temperature.
D. decreasing the temperature.

Consider the following equilibrium system:

In order to increase the value of \(K_{eq}\) for this reaction, you could
A. increase \([\text{CO}]\)
B. increase the volume
C. decrease \([\text{CH}_3\text{OH}]\)
D. decrease the temperature.

Consider the following equilibrium:

\[
\text{Co(H}_2\text{O)}_{6}^{2+}(aq) + 4\text{Cl}^{-}(aq) \; \rightleftharpoons \; \text{CoCl}_4^{2-}(aq) + 6\text{H}_2\text{O}(l)
\]

When the temperature is increased, the solution turns a dark blue. Based on this observation, the reaction is
A. exothermic and the \(K_{eq}\) has increased.
B. exothermic and the \(K_{eq}\) has decreased.
C. endothermic and the \(K_{eq}\) has increased.
D. endothermic and the \(K_{eq}\) has decreased.

Consider the following reaction:

\[
\text{C}_f(s) + 2\text{H}_2(g) \; \rightleftharpoons \; \text{CH}_4(g)
\]

\[\Delta H = -74.8 \text{ kJ}\]

Which of the following will cause an increase in the value of \(K_{eq}\) ?
A. increasing \([\text{H}_2]\)
B. decreasing the volume
C. finely powdering the \(\text{C}_f(s)\)
D. decreasing the temperature.

Consider the following equilibrium:

\[
\text{PCl}_5(g) \; \rightleftharpoons \; \text{PCl}_3(g) + \text{Cl}_2(g)
\]

When the temperature decreases, the equilibrium
A. shifts left and \(K_{eq}\) value increases.
B. shifts left and \(K_{eq}\) value decreases.
C. shifts right and \(K_{eq}\) value increases.
D. shifts right and \(K_{eq}\) value decreases.

Consider the following equilibrium:

\[
\text{N}_2(g) + \text{O}_2(g) \; \rightleftharpoons \; 2\text{NO}_2(g)
\]

\[\Delta H = +181 \text{ kJ}\]

When the temperature is decreased, the equilibrium
A. shifts left and the \(K_{eq}\) value increases.
B. shifts left and the \(K_{eq}\) value decreases.
C. shifts right and the \(K_{eq}\) value increases.
D. shifts right and the \(K_{eq}\) value decreases.
Consider the following equilibrium:

\[\text{CO}_\text{(g)} + 2\text{H}_2\text{(g)} \rightleftharpoons \text{CH}_3\text{OH}_\text{(g)} + 91 \text{ kJ} \]

A change in temperature of the above system increases the value of the equilibrium constant. The new state of equilibrium was established by a shift

A. left as a result of a decrease in temperature.
B. right as a result of a decrease in temperature.
C. left as a result of an increase in temperature.
D. right as a result of an increase in temperature.

The value of the equilibrium constant will change when

A. a catalyst is used
B. temperature changes.
C. product concentrations change
D. the volume of a gaseous system changes.

Consider the following potential energy diagram for an equilibrium system:

When the temperature of the system is increased, the equilibrium shifts to the

A. left and the \(K_{\text{eq}} \) increases.
B. left and the \(K_{\text{eq}} \) decreases.
C. right and the \(K_{\text{eq}} \) increases.
D. right and the \(K_{\text{eq}} \) decreases.

The relationship between \(K_{\text{eq}} \) and temperature for an exothermic reaction is represented by:

A.
B.
C.
D.

Consider the following equilibrium:

\[\text{PCl}_5\text{(g)} \rightleftharpoons \text{PCl}_3\text{(g)} + \text{Cl}_2\text{(g)} \]

A 1.00 L flask contains 0.0200 mol \(\text{PCl}_5 \), 0.0500 mol \(\text{PCl}_3 \) and 0.0500 mol \(\text{Cl}_2 \) at equilibrium. The value of \(K_{\text{eq}} \) is

A. 0.125
B. 2.50
C. 5.00
D. 8.00

Consider the following equilibrium:

A 1.00 L flask contains 0.030 mol \(\text{NO}_2 \) and 0.040 mol \(\text{N}_2\text{O}_4 \) at equilibrium. The value of \(K_{\text{eq}} \) is

A. 0.023
B. 0.67
C. 1.3
D. 44

Consider the following:

\[\text{C}_\text{(s)} + \text{H}_2\text{O}_\text{(g)} \rightleftharpoons \text{CO}_\text{(g)} + \text{H}_2\text{(g)} \]

At equilibrium in a 1.0 L container, there are \(1.60 \times 10^{-2} \) mol \(\text{C} \), \(1.50 \times 10^{-2} \) mol \(\text{H}_2\text{O} \), \(3.00 \times 10^{-1} \) mol \(\text{CO} \), and \(1.00 \times 10^{-1} \) mol \(\text{H}_2 \). The value of \(K_{\text{eq}} \) is

A. 0.500
B. 2.00
C. 80.0
D. 125
165 **F5** Consider the following equilibrium:

\[
H_2(g) + I_2(g) \rightleftharpoons 2HI(g)
\]

At equilibrium the \([H_2] = 0.020\) mol/L, \([I_2] = 0.020\) mol/L and \([HI] = 0.160\) mol/L. **The value of the equilibrium constant is**...

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>(2.5 \times 10^{-3})</td>
</tr>
<tr>
<td>B.</td>
<td>(1.6 \times 10^{-2})</td>
</tr>
<tr>
<td>C.</td>
<td>(6.4 \times 10^{1})</td>
</tr>
<tr>
<td>D.</td>
<td>(4.0 \times 10^{2})</td>
</tr>
</tbody>
</table>

166 **F5** Consider the following equilibrium:

\[
C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)
\]

The contents of a 1.00 L container at equilibrium were analyzed and found to contain 0.20 mol C, 0.20 mol H\(_2\)O, 0.60 mol CO and 0.60 mol H\(_2\). **The equilibrium constant is**...

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>0.11</td>
</tr>
<tr>
<td>B.</td>
<td>0.56</td>
</tr>
<tr>
<td>C.</td>
<td>1.8</td>
</tr>
<tr>
<td>D.</td>
<td>9.0</td>
</tr>
</tbody>
</table>

167 **F5** Consider the following equilibrium:

\[
H_2(g) + S(s) \rightleftharpoons H_2S(g)
\]

In a 1.0 L container at equilibrium there are 0.050 mol H\(_2\), 0.050 mol S and 1.0 mol H\(_2\)S. **The value of K\(_{eq}\) is**

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>(2.5 \times 10^{-3})</td>
</tr>
<tr>
<td>B.</td>
<td>(5.0 \times 10^{-2})</td>
</tr>
<tr>
<td>C.</td>
<td>(2.0 \times 10^{1})</td>
</tr>
<tr>
<td>D.</td>
<td>(4.0 \times 10^{2})</td>
</tr>
</tbody>
</table>

168 **F5** Consider the following system and concentrations at equilibrium:

\[
2NO(g) + Br_2(g) \rightleftharpoons 2NOBr(g)
\]

<table>
<thead>
<tr>
<th>Substance</th>
<th>Equilibrium Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>(1.2 \times 10^{-2}) mol/L</td>
</tr>
<tr>
<td>Br(_2)</td>
<td>(3.4 \times 10^{-2}) mol/L</td>
</tr>
<tr>
<td>NOBr</td>
<td>(5.8 \times 10^{-1}) mol/L</td>
</tr>
</tbody>
</table>

What is the value of K\(_{eq}\) for the above system?

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>(1.5 \times 10^{-3})</td>
</tr>
<tr>
<td>B.</td>
<td>(8.2 \times 10^{2})</td>
</tr>
<tr>
<td>C.</td>
<td>(1.4 \times 10^{3})</td>
</tr>
<tr>
<td>D.</td>
<td>(6.9 \times 10^{4})</td>
</tr>
</tbody>
</table>

169 **F5** Consider the following equilibrium system:

\[
PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)
\]

At equilibrium, [PCl\(_5\)] is 0.400M, [PCl\(_3\)] is 1.50M and [Cl\(_2\)] is 0.600M. **The K\(_{eq}\) for the reaction is**

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>0.360</td>
</tr>
<tr>
<td>B.</td>
<td>0.444</td>
</tr>
<tr>
<td>C.</td>
<td>0.900</td>
</tr>
<tr>
<td>D.</td>
<td>2.25</td>
</tr>
</tbody>
</table>

170 **F5** Consider the following equilibrium system at 25°C:

\[
2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)
\]

At equilibrium, \([SO_2]\) is \(4.00 \times 10^{-3}\) mol/L, \([O_2]\) is \(4.00 \times 10^{-3}\) mol/L and \([SO_3]\) is \(2.33 \times 10^{-3}\) mol/L. **From this data, the K\(_{eq}\) value for the above system is**

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>(6.85 \times 10^{-3})</td>
</tr>
<tr>
<td>B.</td>
<td>(1.18 \times 10^{-2})</td>
</tr>
<tr>
<td>C.</td>
<td>84.8</td>
</tr>
<tr>
<td>D.</td>
<td>146</td>
</tr>
</tbody>
</table>

171 **F5** Consider the following equilibrium system:

\[
CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)
\]

At equilibrium, a 2.0 litre sample was found to contain 1.00 mol CO, 0.500 mol Cl\(_2\) and 0.100 mol COCl\(_2\). **The K\(_{eq}\) value for the above system is**

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>0.40</td>
</tr>
<tr>
<td>B.</td>
<td>0.20</td>
</tr>
<tr>
<td>C.</td>
<td>2.5</td>
</tr>
<tr>
<td>D.</td>
<td>5.0</td>
</tr>
</tbody>
</table>
172 F5 Consider the following equilibrium:

\[\text{H}_2(g) + \text{I}_2(g) \rightleftharpoons 2\text{HI}(g) \]

At equilibrium \([\text{H}_2] = 0.00220 \text{ mol/L}, [\text{I}_2] = 0.00220 \text{ mol/L} \) and \([\text{HI}] = 0.0156 \text{ mol/L}\). The value of \(K_{eq}\) is

A. \(3.10 \times 10^{-4}\)
B. \(1.99 \times 10^{-2}\)
C. \(5.03 \times 10^{3}\)
D. \(3.22 \times 10^{3}\)

173 F6 Consider the following equilibrium:

\[\text{PCl}_3(g) + \text{Cl}_2(g) \rightleftharpoons \text{PCl}_5(g) \]

When 0.40 mol of \(\text{PCl}_3\) and 0.40 mol of \(\text{Cl}_2\) are placed in a 1.00 L container and allowed to reach equilibrium, 0.244 mol of \(\text{PCl}_5\) are present. From this information, the value of \(K_{eq}\) is

A. 0.10
B. 0.30
C. 3.3
D. 10

174 F6 Consider the following:

\[2\text{C}(s) + \text{O}_2(g) \rightleftharpoons 2\text{CO}(g) \]

A 1.00 L flask is initially filled with 2.00 mol C and 0.500 mol \(\text{O}_2\). At equilibrium, the \([\text{O}_2]\) is 0.250 mol/L. The \(K_{eq}\) value is

A. 0.444
B. 1.00
C. 2.00
D. 2.25

175 F7 Consider the following equilibrium:

\[2\text{HBr}(g) \rightleftharpoons \text{H}_2(g) + \text{Br}_2(g) \]

Initially, 0.100 mol HBr is placed into a 2.0 L container. At equilibrium, there are 0.040 mol HBr present. The equilibrium concentration of \(\text{H}_2\) is

A. 0.0050 mol/L
B. 0.010 mol/L
C. 0.015 mol/L
D. 0.030 mol/L

176 F7 Consider the following equilibrium:

\[\text{N}_2\text{O}_4(g) \rightleftharpoons 2\text{NO}_2(g) \]

A 1.00 L container is initially filled with 0.200 mol \(\text{N}_2\text{O}_4\). At equilibrium, 0.160 mol \(\text{NO}_2\) are present. What is the equilibrium concentration of \(\text{N}_2\text{O}_4\)?

A. 0. 040 mol/L
B. 0. 080 mol/L
C. 0.120 mol/L
D. 0.160 mol/L

177 F7 Consider the following equilibrium:

\[2\text{NOBr}(g) \rightleftharpoons 2\text{NO}_2(g) + \text{Br}_2(g) \quad K_{eq} = 6.4 \times 10^{-2} \]

At equilibrium, a 1.00 L flask contains 0.030 mol NOBr and 0.030 mol NO. How many mol \(\text{Br}_2\) are present?

A. \(1.9 \times 10^{-3}\) mol
B. \(6.4 \times 10^{-2}\) mol
C. \(3.0 \times 10^{-2}\) mol
D. \(4.7 \times 10^{-1}\) mol
Consider the following equilibrium:

\[\text{CO}_2(g) + 2\text{H}_2(g) \rightleftharpoons \text{CH}_3\text{OH}(g) \quad K_{eq} = 12.0 \]

At equilibrium, a 1.00 L flask contains 0.020 mol CO and 0.35 mol H\(_2\). What is the concentration of \(\text{CH}_3\text{OH}\) at equilibrium?

A. \(2.0 \times 10^{-4}\) mol/L
B. \(5.8 \times 10^{-4}\) mol/L
C. \(2.9 \times 10^{-2}\) mol/L
D. \(8.4 \times 10^{-2}\) mol/L

Consider the following equilibrium:

\[\text{N}_2\text{O}_4(g) \rightleftharpoons 2\text{NO}_2(g) \quad K_{eq} = 1.0 \times 10^{-2} \]

At equilibrium, the [\(\text{NO}_2\)] = 2.0 \(\times\) \(10^{-2}\) mol/L and the [\(\text{N}_2\text{O}_4\)] is

A. 4.0 \(\times\) \(10^{-6}\) mol/L
B. 4.0 \(\times\) 10^{-2} mol/L
C. 2.0 mol/L
D. 25 mol/L

Consider the following equilibrium:

\[\text{CH}_4(g) + \text{H}_2\text{O}(g) \rightleftharpoons \text{CO}_2(g) + 3\text{H}_2(g) \quad K_{eq} = 5.7 \]

At equilibrium, the [\(\text{CH}_4\)] = 0.40 mol/L, [\(\text{CO}_2\)] = 0.30 mol/L and [\(\text{H}_2\)] = 0.80 mol/L. The [\(\text{H}_2\text{O}\)] is

A. 0.067 mol/L
B. 0.11 mol/L
C. 2.2 mol/L
D. 5.3 mol/L

A 1.00 L container at equilibrium was analyzed and found to contain 0.0200 mol \(\text{NO}_2\). At equilibrium, the concentration of \(\text{N}_2\text{O}_4\) is

A. 0.0868 mol/L
B. 0.230 mol/L
C. 4.34 mol/L
D. 11.5 mol/L

Consider the following equilibrium:

\[\text{N}_2\text{O}_4(g) \rightleftharpoons 2\text{NO}_2(g) \quad K_{eq} = 4.61 \times 10^{-3} \]

At equilibrium, the [\(\text{N}_2\text{O}_4\)] is equal to....

A. \(\frac{0.133}{[\text{NO}_2]}\)
B. \(\frac{[\text{NO}_2]}{0.133}\)
C. \(\frac{0.133}{[\text{NO}_2]^2}\)
D. \(\frac{[\text{NO}_2]^2}{0.133}\)

Consider the following equilibrium:

\[2\text{NO}(g) + \text{Cl}_2(g) \rightleftharpoons 2\text{NOCl}(g) \quad K_{eq} = 12 \]

At equilibrium, [\(\text{NOCl}\)] = 1.60 mol/L and [\(\text{NO}\)] = 0.80 mol/L. The [\(\text{Cl}_2\)] is...

A. 0.17 mol/L
B. 0.27 mol/L
C. 0.33 mol/L
D. 3.0 mol/L

Consider the following equilibrium system:

\[2\text{NO}(g) + \text{O}_2(g) \rightleftharpoons 2\text{NO}_2(g) \quad K_{eq} = 65 \]

At equilibrium, the [\(\text{NO}\)] = 0.600 M and the [\(\text{O}_2\)] = 0.300 M. Using this data, the equilibrium [\(\text{NO}_2\)] is:

A. 7.0 M
B. 3.4 M
C. 2.6 M
D. 0.60 M
Consider the following equilibrium:

\[2\text{NO}_2(g) \rightleftharpoons \text{N}_2\text{O}_4(g) \quad K_{eq} = 1.15 \]

The equilibrium concentration of NO\(_2\) is 0.50 mol/L. **Calculate the equilibrium concentration of N\(_2\)O\(_4\)(g)\.**

A. 0.22 mol/L
B. 0.29 mol/L
C. 0.43 mol/L
D. 0.58 mol/L

Consider the following equilibrium:

\[2\text{O}_3(g) \rightleftharpoons 3\text{O}_2(g) \quad K_{eq} = 36 \]

What is the concentration of O\(_3\) when the equilibrium concentration of O\(_2\) is 6.0 \(\times\) 10\(^{-2}\) mol/L?

A. \(2.4 \times 10^{-3}\) mol/L
B. \(4.0 \times 10^{-2}\) mol/L
C. \(6.0 \times 10^{-2}\) mol/L
D. \(9.0 \times 10^{-2}\) mol/L

Consider the following equilibrium:

\[\text{PCl}_5(g) \rightleftharpoons \text{PCl}_3(g) + \text{Cl}_2(g) \quad K_{eq} = 2.30 \]

A 1.0 L container is filled with 0.05 mol PCl\(_5\), 1.0 mol PCl\(_3\), and 1.0 mol Cl\(_2\). **The system proceeds to the**

A. left because Trial \(K_{eq} > K_{eq}\)
B. left because Trial \(K_{eq} < K_{eq}\)
C. right because Trial \(K_{eq} > K_{eq}\)
D. right because Trial \(K_{eq} < K_{eq}\)

Consider the following equilibrium:

\[\text{H}_2\text{O}(g) + \text{Cl}_2\text{O}(g) \rightleftharpoons 2\text{HOCl}(g) \quad K_{eq} = 9.0 \times 10^{-2} \]

A 1.0 L flask contains a mixture of \(1.8 \times 10^{-1}\) mol H\(_2\)O, \(4.0 \times 10^{-4}\) mol Cl\(_2\)O, and \(8.0 \times 10^{-2}\) mol HOCl. **To establish equilibrium, the system will proceed to the**

A. left because Trial \(K_{eq} > K_{eq}\)
B. left because Trial \(K_{eq} < K_{eq}\)
C. right because Trial \(K_{eq} > K_{eq}\)
D. right because Trial \(K_{eq} < K_{eq}\)

Consider the following equilibrium:

\[2\text{O}_3(g) \rightleftharpoons 3\text{O}_2(g) \quad K_{eq} = 55 \]

If 0.060 mol of O\(_3\) and 0.70 mol of O\(_2\) are introduced into a 1.0 L vessel, the

A. \(K_{trial} > K_{eq}\) and the \([O_2]\) increases.
B. \(K_{trial} < K_{eq}\) and the \([O_2]\) increases.
C. \(K_{trial} > K_{eq}\) and the \([O_2]\) decreases.
D. \(K_{trial} < K_{eq}\) and the \([O_2]\) decreases.
Consider the following equilibrium:

\[
N_2(g) + O_2(g) \rightleftharpoons 2NO(g) \quad K_{eq} = 0.010
\]

Initially, a 1.0 L container is filled with 0.40 mol of N\textsubscript{2}, 0.10 mol of O\textsubscript{2} and 0.080 mol of NO.
As the system approaches equilibrium the

A. [NO], [N\textsubscript{2}] and [O\textsubscript{2}] remain unchanged.
B. [NO] increases and both [N\textsubscript{2}] and [O\textsubscript{2}] decrease.
C. [NO] decreases and both [N\textsubscript{2}] and [O\textsubscript{2}] increase.
D. [NO] decreases and both [N\textsubscript{2}] and [O\textsubscript{2}] remain unchanged.

Consider the following:

\[
2NO_2(g) \rightleftharpoons N_2O_4(g) \quad K_{eq} = 1.20
\]

A 1.0 L flask is filled with 1.4 mol NO\textsubscript{2} and 2.0 mol N\textsubscript{2}O\textsubscript{4}. To reach equilibrium, the reaction proceeds to the

A. left as Trial \(K_{eq} > K_{eq} \)
B. left as Trial \(K_{eq} < K_{eq} \)
C. right as Trial \(K_{eq} > K_{eq} \)
D. right as Trial \(K_{eq} < K_{eq} \)

Consider the following equilibrium:

\[
PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g) \quad K_{eq} = 33.3
\]

Predict what will occur when 2.0 mol of PCl\textsubscript{5}, 3.0 mol of PCl\textsubscript{3} and 4.0 mol of Cl\textsubscript{2} are placed in a 1.0 L container and allowed to establish equilibrium.

A. [PCl\textsubscript{5}] will increase
B. [PCl\textsubscript{3}] and [Cl\textsubscript{2}] will both increase
C. [PCl\textsubscript{5}] and [Cl\textsubscript{2}] will both increase
D. [PCl\textsubscript{5}] and [PCl\textsubscript{3}] will both decrease

Consider the following equilibrium system:

\[
2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) \quad K_{eq} = 4.0
\]

In an experiment, 0.40 mol SO\textsubscript{2(g)}, 0.20 mol O\textsubscript{2(g)} and 0.40 mol SO\textsubscript{3(g)} are placed into a 1.0 litre container. Which of the following statements relates the changes in [SO\textsubscript{2}] and [O\textsubscript{2}] as equilibrium becomes established?

A. The [SO\textsubscript{2}] and [O\textsubscript{2}] increase.
B. The [SO\textsubscript{2}] and [O\textsubscript{2}] decrease.
C. The [SO\textsubscript{2}] and [O\textsubscript{2}] do not change
D. The [SO\textsubscript{2}] increases and the [O\textsubscript{2}] decreases.

Consider the following equilibrium:

\[
2NOCl(s) \rightleftharpoons 2NO(g) + Cl_2(g)
\]

A flask is filled with NOCl, NO and Cl\textsubscript{2}. Initially there was a total of 5.0 moles of gases present. When equilibrium is reached, there is a total of 6.0 moles of gases present. Which of the following explains this observation?

A. The reaction proceeded left because the Trial \(K_{eq} > K_{eq} \)
B. The reaction proceeded left because the Trial \(K_{eq} < K_{eq} \)
C. The reaction proceeded right because the Trial \(K_{eq} > K_{eq} \)
D. The reaction proceeded right because the Trial \(K_{eq} < K_{eq} \)
Consider the following equilibrium:

\[2\text{NOCl}(g) \rightleftharpoons 2\text{NO}(g) + \text{Cl}_2(g) \]

A flask of fixed volume is initially filled with NOCl\(_{(g)}\), NO\(_{(g)}\), and Cl\(_2(g)\). When equilibrium is reached, the pressure has increased. To reach equilibrium, the reaction proceeded to the

A. left because Trial K\(_{eq}\) was less than K\(_{eq}\)
B. right because Trial K\(_{eq}\) was less than K\(_{eq}\)
C. left because Trial K\(_{eq}\) was greater than K\(_{eq}\)
D. right because Trial K\(_{eq}\) was greater than K\(_{eq}\)

ANSWERS TO MULTIPLE CHOICE QUESTIONS:

<table>
<thead>
<tr>
<th>INTRODUCTION</th>
<th>PRINCIPLE</th>
<th>LE CHATELIER'S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. B</td>
<td>73. A</td>
<td>98. A</td>
</tr>
<tr>
<td>3. C</td>
<td>75. D</td>
<td>100. C</td>
</tr>
<tr>
<td>4. C</td>
<td>76. C</td>
<td></td>
</tr>
<tr>
<td>5. C</td>
<td>77. C</td>
<td></td>
</tr>
<tr>
<td>6. D</td>
<td>78. A</td>
<td></td>
</tr>
<tr>
<td>7. B</td>
<td>79. C</td>
<td></td>
</tr>
<tr>
<td>8. C</td>
<td>80. C</td>
<td></td>
</tr>
<tr>
<td>9. C</td>
<td>81. B</td>
<td></td>
</tr>
<tr>
<td>10. D</td>
<td>82. D</td>
<td></td>
</tr>
<tr>
<td>11. A</td>
<td>83. C</td>
<td></td>
</tr>
<tr>
<td>12. B</td>
<td>84. A</td>
<td></td>
</tr>
<tr>
<td>13. D</td>
<td>85. A</td>
<td></td>
</tr>
<tr>
<td>14. C</td>
<td>86. A</td>
<td></td>
</tr>
<tr>
<td>15. A</td>
<td>87. B</td>
<td></td>
</tr>
<tr>
<td>16. C</td>
<td>88. B</td>
<td></td>
</tr>
<tr>
<td>17. D</td>
<td>89. B</td>
<td></td>
</tr>
<tr>
<td>18. B</td>
<td>90. D</td>
<td></td>
</tr>
<tr>
<td>20. D</td>
<td>92. B</td>
<td></td>
</tr>
<tr>
<td>21. C</td>
<td>93. A</td>
<td></td>
</tr>
<tr>
<td>22. B</td>
<td>94. C</td>
<td></td>
</tr>
<tr>
<td>23. D</td>
<td>95. D</td>
<td></td>
</tr>
<tr>
<td>24. D</td>
<td>96. C</td>
<td></td>
</tr>
<tr>
<td>25. D</td>
<td>97. B</td>
<td></td>
</tr>
</tbody>
</table>

THE EQUILIBRIUM CONSTANT

101. D
102. A
103. A
104. D
105. A
106. B
107. A
108. B
109. A
110. C
111. C
112. C
113. A
114. B
115. C
116. B
117. A
118. A
119. A
120. B
INTRODUCTION TO EQUILIBRIUM

D3 1. Consider the following equilibrium:

\[
2\text{NOCl}_\text{(g)} \rightleftharpoons 2\text{NO}_\text{(g)} + \text{Cl}_2\text{(g)}
\]

A chemist places 2.00 mol NOCl in a 1.0 L container. Describe the changes in \([\text{NOCl}]\) and \([\text{Cl}_2]\) as the system approaches equilibrium. (1 mark)

D4 2. Identify four characteristics of a chemical equilibrium. (2 marks)

D4 3. What is “equal” in a chemical reaction that has reached a state of equilibrium? 2 marks

D5 4. a) Why are chemical equilibria referred to as dynamic? (1 mark)

b) How is a chemical system at equilibrium recognized? (1 mark)

D7 5. Consider the following equilibrium:

\[
4\text{HCl}_\text{(g)} + \text{O}_2\text{(g)} \rightleftharpoons 2\text{H}_2\text{O}_\text{(g)} + 2\text{Cl}_2\text{(g)} + \text{energy}
\]

a) How does the entropy change in the forward direction? Explain your reasoning. (1 mark)

b) How does the enthalpy change in the forward direction? Explain your reasoning. (1 mark)

D9 6. Describe how enthalpy and entropy change, in the forward direction, as an exothermic reaction reaches equilibrium. Explain your reasoning. (2 marks)

LE CHATELIER’S PRINCIPLE

E1 7. State Le Chatelier’s Principle. (2 marks)

E1 8. State Le Chatelier’s Principle. (2 marks)
Consider the following equilibrium:

\[2\text{NO}_2(g) + \text{Cl}_2(g) \rightleftharpoons 2\text{NOCl}(g) \quad \Delta H = -77 \text{ kJ} \]

What happens to the amount of \(\text{Cl}_2 \) when the following changes are imposed?

Explain, using Le Chatelier’s principle.

a) Removing \(\text{NO}_2(g) \). (1 mark)
b) Decreasing the temperature. (1 mark)

Consider the following equilibrium:

\[\text{CO}_2(g) + 2\text{H}_2(g) \rightleftharpoons \text{CH}_3\text{OH}(g) \quad \Delta H = -18 \text{ kJ} \]

Explain, using Le Chatelier’s principle, how the following changes will affect the number of moles of \(\text{CH}_3\text{OH} \) present at equilibrium.

a) Adding a catalyst. (1 mark)
b) Decreasing the volume of the system. (1 mark)

Consider the following equilibrium:

\[\text{PCl}_3(g) + \text{Cl}_2(g) \rightleftharpoons \text{PCl}_5(g) \quad \Delta H = -88 \text{ kJ} \]

What happens to the \([\text{PCl}_3]\) when additional \(\text{Cl}_2 \) is added at constant temperature and volume? Explain. (2 marks)

Consider the following equilibrium:

\[2\text{CrO}_4^{2-}(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{Cr}_2\text{O}_7^{2-}(aq) + 2\text{OH}^-(aq) \]

When HCl is added drop-by-drop to the yellow solution above, the solution turns orange. Explain why this colour change occurs. (2 marks)

Consider the following equilibrium:

\[\text{N}_2\text{H}_4(g) + 2\text{O}_2(g) \rightleftharpoons 2\text{NO}_2(g) + 2\text{H}_2\text{O}(g) \]

More oxygen is added to the above equilibrium. After the system re-establishes equilibrium, identify the substance(s), if any, that have a net increase in concentration. (2 marks)
a) __
b) __

Consider the following equilibrium system:

\[\text{Fe}^{3+}(aq) + \text{SCN}^-(aq) \rightleftharpoons \text{FeSCN}^{2+}(aq) \]

In an experiment, a student places the above equilibrium system into a cold water bath and notes that the intensity of the red colour increases. The student then concludes that the equilibrium is exothermic.

a) Do you agree or disagree? 0.5 mark
b) Explain: 1.5 marks

Consider the following reaction: **AUG 2000**

\[\text{Fe}^{3+}(aq) + \text{SCN}^-(aq) \rightleftharpoons \text{FeSCN}^{2+}(aq) \]

When a few drops of 6.0 M NaOH is added to 25.0 mL of the above system, a precipitate of \(\text{Fe(OH)}_3 \) forms and the solution turns pale yellow.

a) Explain this colour change in terms of Le Chatelier’s Principle. (2 marks)
b) Describe the effect on the rate of the reverse reaction as the colour change occurs. (1 mark)
Consider the observations for the following equilibrium:

\[\text{N}_2\text{O}_4(g) \rightleftharpoons 2\text{NO}_2(g) \]

(a) Sketch the potential energy curve on the graph below for this equilibrium. (1 mark)

(b) Explain the colour change using Le Châtelier’s Principle. (1 mark)

(c) Other than changing temperature, what could be done to cause a shift to the left? (1 mark)

Methanol, CH\(_3\)OH, is produced industrially by the following reaction:

\[\text{CO}(g) + 2\text{H}_2(g) \rightleftharpoons \text{CH}_3\text{OH}(g) + \text{heat} \]

(a) State two different methods of shifting the equilibrium to the right. (1 mark)

(b) In terms of rates, explain why these methods cause the equilibrium to shift to the right. (1 mark)

Consider the following equilibrium:

\[2\text{H}_2\text{O}(g) \rightleftharpoons 2\text{H}_2(g) + \text{O}_2(g) \]

Identify two ways to increase the rate of the forward reaction. (2 marks)

Consider the following equilibrium:

\[\text{HInd} + \text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ + \text{Ind}^- \]

The system is yellow and turns blue on the addition of NaOH. In terms of the forward and reverse reaction rates, explain why this shift occurs. (2 marks)
THE EQUILIBRIUM CONSTANT

F1 20 Consider the following equilibrium system:

\[\text{N}_2(g) + 3 \text{H}_2(g) \rightleftharpoons 2 \text{NH}_3(g) + \text{energy} \]

A 1.00 L container is filled with 5.0 mol \(\text{NH}_3 \) and the system proceeds to equilibrium as indicated by the graph.

a) Draw and label the graph for \(\text{N}_2 \) and \(\text{H}_2 \). (2 marks)
b) Calculate the \(K_{eq} \) for \(\text{N}_2(g) + 3 \text{H}_2(g) \rightleftharpoons 2 \text{NH}_3(g) \). (2 marks)

F1 21 Consider the following equilibrium:

\[\text{H}_2(g) + \text{I}_2(g) \rightleftharpoons 2 \text{HI}(g) \quad K_{eq} = 64 \]

Equal moles of \(\text{H}_2 \) and \(\text{I}_2 \) are placed in a 1.00 L container. At equilibrium, the \([\text{HI}]=0.160 \text{ mol/L}\). Calculate the initial \([\text{H}_2]\). (3 marks)

F1 22 Consider the following equilibrium:

\[\text{H}_2(g) + \text{I}_2(g) \rightleftharpoons 2 \text{HI}(g) \]

A 2.0L container is filled with 0.070 mol of \(\text{H}_2 \) and 0.060mol of \(\text{I}_2 \). Equilibrium is reached after 15.0 minutes at which time there is 0.060 mol of \(\text{HI} \) present. Sketch and label the graphs for the changes in concentrations of \(\text{H}_2 \), \(\text{I}_2 \), and \(\text{HI} \) for the time period of 0 to 30.0 minutes. (3 marks)

F2 23 Consider the following equilibrium:

\[2\text{NO}_2(g) + \text{O}_2(g) \rightleftharpoons 2\text{NO}_3(g) \quad K_{eq} = 6.45 \times 10^5 \]

a) Write the \(K_{eq} \) expression. (1 mark)

b) Explain why the \([\text{NO}_3]\) is greater than the \([\text{NO}]\) at equilibrium when the \([\text{O}_2]\) is 1.0 mol/L. (1 mark)
Consider the following equilibrium:

\[
\text{CS}_2(g) + 3\text{Cl}_2(g) \rightleftharpoons \text{CCl}_4(g) + \text{S}_2\text{Cl}_2(g) \quad \Delta H = -238 \text{ kJ}
\]

a) Sketch a potential energy diagram for the reaction above and label \(\Delta H\). (2 marks)
b) Some \(\text{CS}_2\) is added and equilibrium is then reestablished. State the direction of the equilibrium shift and the resulting change in \([\text{Cl}_2]\). (1 mark)
c) The temperature is decreased and equilibrium is then reestablished. What will the effect be on the value of \(K_{eq}\)? (1 mark)

Consider the graph below representing the following equilibrium:

\[
\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3(g) \rightleftharpoons \text{CH}_3\text{CH}\left(\text{CH}_3\right)\text{CH}_3(g)
\]

Data for the graph was obtained from various equilibrium mixtures.

Calculate the value of \(K_{eq}\) for the equilibrium. (2 marks)

Consider the following diagram for a chemical system containing three substances represented by A, B and C:

a) What feature of the graph indicates that the system reaches equilibrium? (1 mark)
b) Write a balanced equation for the equilibrium reaction. (2 marks)
c) Calculate \(K_{eq}\) at equilibrium. (2 marks)
27 Consider the following graph for the reaction:

\[\text{energy} \quad \text{N}_2\text{O}_4(g) \rightleftharpoons 2\text{NO}_2(g) \]

![Graph showing concentration over time](image)

a) What is the stress imposed at time \(t_1 \)? (1 mark)
b) What is the stress imposed at time \(t_3 \)? (1 mark)
c) Calculate \(K_{eq} \) for the equilibrium between \(t_2 \) and \(t_3 \). (2 marks)

28 Consider the following equilibrium:

\[2\text{NO}(g) + \text{O}_2(g) \rightleftharpoons 2\text{NO}_2(g) \]

At 227°C in a 2.00 L container there are 0.044 mol NO, 0.100 mol \(\text{O}_2 \) and 7.88 mol \(\text{NO}_2 \) at equilibrium. Calculate the equilibrium constant. (3 marks)

29 At high temperature, 0.500 mol HBr was placed in a 1.00 L container where it decomposed to give the equilibrium:

\[2\text{HBr}(g) \rightleftharpoons \text{H}_2(g) + \text{Br}_2(g) \]

At equilibrium, the [\(\text{Br}_2 \)] is 0.0855 mol/L. What is the value of the equilibrium constant? (3 marks)

30 Consider the following equilibrium:

\[2\text{CO}_2(g) \rightleftharpoons \text{CO}(g) + \text{O}_2(g) \]

Initially, a 1.0 L container is filled with 0.050 mol of \(\text{CO}_2 \). At equilibrium, the [\(\text{CO}_2 \)] is 0.030 mol/L. Calculate the value of \(K_{eq} \). (3 marks)

31 Consider the following equilibrium:

\[2\text{CH}_4(g) \rightleftharpoons \text{C}_2\text{H}_2(g) + 3\text{H}_2(g) \]

A 0.180 mol sample of \(\text{CH}_4 \) is added to an empty 1.00 L container. At equilibrium, the [\(\text{C}_2\text{H}_2 \)] is 0.0800 mol/L. Calculate the equilibrium constant. (4 marks)

32 In an experiment, 0.200 mol of \(\text{CO}(g) \) and 0.400 mol of \(\text{O}_2(g) \) are placed in a 1.00 L container and the following equilibrium is achieved:

\[2\text{CO}(g) + \text{O}_2(g) \rightleftharpoons 2\text{CO}_2(g) \]

At equilibrium, the [\(\text{CO}_2 \)] is found to be 0.160 mol/L. Calculate the value of \(K_{eq} \). (3 marks)

33 Given the following equilibrium:

\[\text{H}_2(g) + \text{I}_2(g) \rightleftharpoons 2\text{HI}(g) \]

Initially, 0.200 mol \(\text{H}_2 \) and 0.200 mol \(\text{I}_2 \) were placed into a 1.0 L container. At equilibrium, the [\(\text{I}_2 \)] is 0.040 mol/L. Calculate the \(K_{eq} \). (3 marks)

34 Consider the following equilibrium system:

\[\text{PCl}_3(g) + \text{Cl}_2(g) \rightleftharpoons \text{PCl}_5(g) \]

At 250°C, 0.40 mol of \(\text{PCl}_3 \) and 0.60 mol of \(\text{Cl}_2 \) are placed into a 1.0 litre container. At equilibrium, the [\(\text{PCl}_5 \)] is 0.11 mol/L. Calculate the value of \(K_{eq} \). (3 marks)
Consider the following equilibrium: \[3I_2(g) + 3F_2(g) \rightleftharpoons 2IF_2(g) + I_4F_2(g) \]

Initially, \(2.00 \times 10^{-1}\) mol of \(I_2\) and \(3.00 \times 10^{-1}\) mol of \(F_2\) are put into a 10.00 L flask. At equilibrium, \([I_4F_2]\) is \(2.00 \times 10^{-3}\) M. Calculate the \(K_{eq}\). \((4\text{ marks})\)

Consider the following equilibrium:

\[\text{Fe}^{3+}_{(aq)} + \text{SCN}^-_{(aq)} \rightleftharpoons \text{FeSCN}^{2+}_{(aq)} \]

Initially, 50.0 mL of 0.10 M \(\text{Fe}^{3+}\) is added to 30.0 mL of 0.20 M \(\text{SCN}^-\).

At equilibrium, the concentration of \(\text{FeSCN}^{2+}\) is found to be 0.050 M. Calculate the \(K_{eq}\) for the reaction. \((4\text{ marks})\)

Consider the following equilibrium:

\[\text{H}_2(g) + \text{I}_2(g) \rightleftharpoons 2\text{HI}(g) \quad K_{eq} = 1.2 \times 10^{-2} \]

A 2.0 L flask is filled with 0.10 mol HI. Calculate the concentration of \(\text{H}_2\) at equilibrium. \((3\text{ marks})\)

Consider the following equilibrium:

\[\text{H}_2(g) + \text{I}_2(g) \rightleftharpoons 2\text{HI}(g) \quad K_{eq} = 49 \]

A 1.00 L container is initially filled with 0.180 mol HI. Calculate the concentration of \(\text{HI}\) at equilibrium. \((4\text{ marks})\)

Consider the following equilibrium:

\[\text{H}_2(g) + \text{I}_2(g) \rightleftharpoons 2\text{HI}(g) \quad K_{eq} = 7.1 \times 10^2 \]

At equilibrium, the \([\text{H}_2]\) = 0.012 mol/L and \([\text{HI}] = 0.40 \text{ mol/L}. \ What\ is\ the\ equilibrium\ concentration\ of\ \text{I}_2\ ? \ (2\text{ marks})\)

Consider the following equilibrium:

\[\text{H}_2(g) + \text{S}(s) \rightleftharpoons \text{H}_2\text{S}(g) \quad K_{eq} = 6.8 \times 10^{-2} \]

A 1.0 L container is initially filled with 0.050 mol \(\text{H}_2\) and 0.050 mol \(\text{S}\). The container is heated to 90° C and equilibrium is established. What is the equilibrium \([\text{H}_2\text{S}]\) ? \((3\text{ marks})\)

Consider the following:

\[\text{H}_2(g) + \text{F}_2(g) \rightleftharpoons 2\text{HF}(g) \quad K_{eq} = 1.00 \times 10^2 \]

A 1.00 L flask is initially filled with 2.00 mol \(\text{H}_2\) and 2.00 mol \(\text{F}_2\). Calculate the \([\text{H}_2]\) at equilibrium. \((4\text{ marks})\)

Consider the following equilibrium:

\[2\text{HI}(g) \rightleftharpoons \text{H}_2(g) + \text{I}_2(g) \quad K_{eq} = 81.0 \]

A 1.00 L container is initially filled with 4.00 mol HI. Calculate the \([\text{HI}]\) at equilibrium. \((4\text{ marks})\)

Consider the following equilibrium:

\[\text{N}_2(g) + 3\text{H}_2(g) \rightleftharpoons 2\text{NH}_3(g) \quad K_{eq} = 626 \text{ at 200°C} \]

At equilibrium, \([\text{N}_2]\) is 1.06 mol/L and \([\text{H}_2]\) is 0.456 mol/L. Calculate \([\text{NH}_3]\) in the equilibrium mixture. \((2\text{ marks})\)

SAHOTA

DYNAMIC EQUILIBRIUM STUDY GUIDE 2000

Page 41 of 52
Consider the following equilibrium system:

A student places 4.5 mol of carbon, 3.6 \times 10^{-3} \text{ mol of hydrogen and 5.1 mol of methane in a 1.0 L flask. The student predicts that the } [\text{CH}_4] \text{ increases as equilibrium is established. Do you agree? Explain your answer using appropriate calculations. (3 marks)}

Consider the following equilibrium system:

In an experiment, a student places 0.10 \text{ mol of C, 0.15 mol of H}_2\text{O, 0.25 mol of CO, and 0.20 mol of H}_2\text{ into a 1.0 L flask. The student predicts that the } [\text{CO}] \text{ will decrease as equilibrium becomes established. (3 marks)}

- a) Would you agree or disagree with the student?
- b) Justify your answer, including appropriate calculations.

The production of ammonia by the Haber process involves the following equilibrium:

The table below indicates the percentage of ammonia in equilibrium mixtures at various temperatures.

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>Percentage of Ammonia in Equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>98</td>
</tr>
<tr>
<td>350</td>
<td>80</td>
</tr>
<tr>
<td>500</td>
<td>51</td>
</tr>
</tbody>
</table>

- a) Explain why the lower temperature results in a higher percentage of ammonia in the equilibrium mixture. (1 mark)
- b) Explain why a temperature of 500°C is used in the Haber process rather than a lower temperature. (1 mark)
EQUILIBRIUM WRITTEN SOLUTIONS (FROM PROVINCIAL KEYS)

D3 1 [NOCl] decreases as it approaches equilibrium. [Cl₂] increases as it approaches equilibrium. 1 mark

D4 2 • Closed container.
 • Constant temperature.
 • Reversible reaction.
 • Both reactants and products present.
 • No changes in macroscopic properties.
 • Rate of forward reaction equals rate of reverse reaction.
 • Responds to imposed stresses.

any four for 1/2 mark each

D4 3 The rates of the forward and reverse reactions.

D5 4 a) Both the forward and reversed reactions continue to occur. 1 mark
 b) A chemical system at equilibrium is recognized by its constant macroscopic properties. 1 mark

D7 5 a) Entropy is decreasing. Five particles of gas (reactants) have more entropy than four particles of gas
 (products). 1 mark
 b) Enthalpy is decreasing. The reaction is exothermic, so the enthalpy of the products is less than the enthalpy of the reactants. 1 mark

D9 6 For Example:
 Enthalpy: is decreasing. 1/2 mark
 Entropy: is decreasing. 1/2 mark
 Explanation: Since the system reaches equilibrium, the drive to minimum enthalpy and maximum entropy must be opposing one another. 1 mark

E1 7 When a system at equilibrium is subjected to a stress, processes occur that tend to counteract the stress and re-establish equilibrium. 2 marks

E1 8 When a system at equilibrium (1/2 mark) is subjected to a stress, (1/2 mark) the system shifts so as to offset the stress (1/2 mark) and establish a new equilibrium (1/2 mark).

E2 9 a) The amount of Cl₂ will increase because the equilibrium shifts left. 1 mark
 b) The amount of Cl₂ will decrease because the equilibrium shifts right. 1 mark

E2 10 a) The moles of CH₃OH will not change because the equilibrium does not shift. 1 mark
 b) The moles of CH₃OH will increase because the equilibrium shifts right. 1 mark

E2 11 The [PCl₃] decreases when additional Cl₂ is added. The addition of Cl₂ causes the equilibrium to shift right.

E2 12 HCl neutralizes OH⁻: H⁺ + OH⁻ → H₂O

\[\therefore [OH^-] \text{ decreases, therefore equilibrium shifts right (orange)}. \] ← 2 marks

E2 13 a) NO, H₂O, O₂ 1/2 mark each
 b) N₂H₄ 1/2 mark

E2 14 agree with student ← 1/2 mark
 cold water bath caused shift in forward direction ← 1/2 mark
 when temp. is decreased, equil shifts in exo direction 1 mark

E2 15 a) The reduced [Fe³⁺] causes a shift to the left to offset the stress. 1 mark

b) The rate of the reverse reaction decreases. 1 mark
E2 16 a)

\[\text{PE} \]

progress of the reaction

\[\rightarrow 1 \text{ mark} \]

b) An increase in temperature causes the reaction to shift to the right and the NO increases. 1 mark

c) To cause a shift to the left add \(\text{NO}_2 \) or remove \(\text{N}_2\text{O}_4 \) or decrease the volume. 1 mark

E2 17 a) For Example: Any two of the following:

- adding reactant
- removing methanol
- decreasing the temperature
- increasing the pressure by decreasing the volume

b) The shift occurs because rate_{(f)} must be greater than rate_{(r)} as a result of the stress.

E3 18 Two of the following:

- Add more \(\text{H}_2\text{O} \)
- Add a catalyst
- Decrease the volume
- Increase the temperature

Addition of \(\text{OH}^- \) decreases \([\text{H}_3\text{O}^+] \), decreasing the reverse rate. Since the forward rate is greater than the reverse rate, the system shifts to the right. 2 marks

E3 19

\[K_{eq} = \frac{[\text{NH}_3]^2}{[\text{N}_2][\text{H}_2]^3} \]

\[= \frac{(1.0)^2}{(2.0)(6.0)^3} \]

\[= 2.3 \times 10^{-3} \]
\[\text{H}_2(g) + \text{I}_2(g) \rightleftharpoons 2\text{HI}(g) \]

<table>
<thead>
<tr>
<th>[I]</th>
<th>(x)</th>
<th>(x)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C]</td>
<td>(-0.080)</td>
<td>(-0.080)</td>
<td>(+0.160)</td>
</tr>
<tr>
<td>[E]</td>
<td>(x - 0.080)</td>
<td>(x - 0.080)</td>
<td>(0.160)</td>
</tr>
</tbody>
</table>

\[K_{eq} = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} \]

\[64 = \frac{(0.160)^2}{(x - 0.080)^2} \]

\[[\text{H}_2] = x = 0.10 \text{ mol/L} \]

Explanation of graph (not for marks).

\[\begin{array}{c|c|c|c}
\text{time (min.)} & 0 & 5 & 10 \\
\hline
\text{concentration (mol/L.)} & 0.010 & 0.020 & 0.030 \\
\hline
\text{[HI]} & \downarrow & \downarrow & \downarrow \\
\text{[H}_2] & \downarrow & \downarrow & \downarrow \\
\text{[I}_2] & \downarrow & \downarrow & \downarrow \\
\end{array} \]

F2 23 a)

\[K_{eq} = \frac{[\text{NO}_2]^2}{[\text{NO}]^2[\text{O}_2]} \]

b) A large \(K_{eq} \) means [products] > [reactants].

F4 24 a)

b) The equilibrium shifts to the right. 1/2 mark and [Cl_2] decreases 1/2 mark.

c) \(K_{eq} \) will increase. 1 mark

SAHOTA

DYNAMIC EQUILIBRIUM STUDY GUIDE 2000

Page 45 of 52
a) The concentrations become constant (1 mark)
b) \(A \rightleftharpoons 2B + C \) (2 marks)

c)

\[
K_{eq} = \frac{[B]^2[C]}{[A]} = \frac{(0.40)^2(0.20)}{0.60} = 0.053
\]

a) Temperature is increased. **1 mark**
b) \(\text{NO}_2 \) added. **1 mark**
c)

\[
K_{eq} = \frac{[\text{NO}_2]^2}{[\text{N}_2\text{O}_4]} = \frac{(0.60)^2}{(0.20)} = 1.8
\] **2 marks**

\[
2\text{NO} + \text{O}_2 \rightleftharpoons 2\text{NO}_2
\]

\[
\begin{array}{c|c|c|c}
[\text{E}] & 0.022 & 0.0500 & 3.94 \\
2.00 \text{ L} & 2.00 \text{ L} & 2.00 \text{ L} \\
\end{array}
\]

\[
K_{eq} = \frac{[\text{NO}_2]^2}{[\text{NO}]^2[\text{O}_2]} = \frac{(3.94)^2}{(0.022)^2(0.0500)}
\] **1.5 marks**

\[
= 6.4 \times 10^5
\] **1 mark**

\[
2\text{HBr}(g) \rightleftharpoons \text{H}_2(g) + \text{Br}_2(g)
\]

\[
\begin{array}{c|c|c|c}
[I] & 0.500 & 0 & 0 \\
[C] & -0.171 & +0.0855 & +0.0855 \\
[E] & 0.329 & 0.0855 & 0.0855 \\
\end{array}
\]

\[
K_{eq} = \frac{[\text{H}_2][\text{Br}_2]}{[\text{HBr}]^2}
\]

\[
= \frac{(0.0855)(0.0855)}{(0.329)^2}
\] **1.5 marks**

\[
= 6.75 \times 10^{-2}
\]
\[
2\text{CO}_2(g) \rightleftharpoons 2\text{CO}_2(g) + \text{O}_2(g)
\]

<table>
<thead>
<tr>
<th></th>
<th>$[\text{I}]$</th>
<th>$[\text{C}]$</th>
<th>$[\text{E}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.050</td>
<td>+0.020</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>+0.020</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>+0.010</td>
<td>0.010</td>
</tr>
</tbody>
</table>

\[
K_{eq} = \frac{[\text{CO}_2]^2[\text{O}_2]}{[\text{CO}_2]^2} = \frac{(0.020)^2(0.010)}{(0.030)^2} = 4.4 \times 10^{-3}
\] \(\leftarrow 1\frac{1}{2}\) marks

Deduct \(\frac{1}{2}\) mark for incorrect significant figures.

\[
2\text{CH}_4(g) \rightleftharpoons \text{C}_2\text{H}_2(g) + 3\text{H}_2(g)
\]

<table>
<thead>
<tr>
<th></th>
<th>$[\text{I}]$</th>
<th>$[\text{C}]$</th>
<th>$[\text{E}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.180</td>
<td>+0.160</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>+0.080</td>
<td>0.080</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>+0.240</td>
<td>0.240</td>
</tr>
</tbody>
</table>

\[
K_{eq} = \frac{[\text{C}_2\text{H}_2][\text{H}_2]^3}{[\text{CH}_4]^2} = \frac{(0.080)(0.240)^3}{(0.020)^2} = 2.8
\] \(\leftarrow 2\) marks

\[
2\text{CO}(g) + \text{O}_2(g) \rightleftharpoons 2\text{CO}_2(g)
\]

<table>
<thead>
<tr>
<th></th>
<th>$[\text{I}]$</th>
<th>$[\text{C}]$</th>
<th>$[\text{E}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.200</td>
<td>+0.160</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>0.400</td>
<td>+0.080</td>
<td>0.320</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>+0.160</td>
<td>0.160</td>
</tr>
</tbody>
</table>

\[
K_{eq} = \frac{[\text{CO}_2]^2}{[\text{CO}]^2[\text{O}_2]} = \frac{(0.160)^2}{(0.040)^2(0.320)} = 5.0 \times 10^4
\] \(\leftarrow 1\frac{1}{2}\) marks
\[
\begin{align*}
\text{H}_2 & + \text{I}_2 \rightleftharpoons 2\text{HI} \\
\begin{array}{ccc}
\text{I} & 0.200 \text{ M} & 0.200 & 0 \\
\text{C} & -0.160 & -0.160 & +0.320 \\
\text{E} & 0.040 & 0.040 & 0.320 \\
\end{array}
\end{align*}
\]
\[K_{eq} = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} \quad \leftarrow 1 \frac{1}{2} \text{ marks}\]
\[= \frac{(0.320)^2}{(0.040)(0.040)} = 64 \quad \leftarrow 1 \frac{1}{2} \text{ marks}\]

\[
\begin{align*}
\text{PCl}_3(g) + \text{Cl}_2(g) & \rightleftharpoons \text{PCl}_5(g) \\
\begin{array}{ccc}
\text{I} & 0.40 & 0.60 & 0.00 \\
\text{C} & -0.11 & -0.11 & +0.11 \quad \leftarrow 1 \frac{1}{2} \text{ marks for ICE} \\
\text{E} & 0.29 & 0.49 & 0.11 \\
\end{array}
\end{align*}
\]
\[K_{eq} = \frac{[\text{PCl}_5]}{[\text{PCl}_3][\text{Cl}_2]} \quad \leftarrow 1 \frac{1}{2} \text{ mark}\]
\[= \frac{(0.11)(0.29)(0.49)}{(0.040)(0.040)} \quad \leftarrow 1 \frac{1}{2} \text{ mark for substitution}\]
\[= 0.77 \quad \leftarrow 1 \frac{1}{2} \text{ mark for final answer}\]

\[
\begin{align*}
\text{3I}_2 & + \text{3F}_2 \rightleftharpoons 2\text{IF}_2 & + \text{I}_4\text{F}_2 \\
\begin{array}{ccc}
\text{I} & 0.0200 & 0.0300 & 0 & 0 \\
\text{C} & -0.0060 & -0.00600 & +0.00400 & +0.00200 \\
\text{E} & 0.0140 & 0.02400 & 0.00400 & 0.00200 \\
\end{array}
\end{align*}
\]
\[1 \text{ mark for division by 10}\]
\[1 \frac{1}{2} \text{ marks for ICE table}\]
\[K_{eq} = \frac{(\text{IF}_2)^2(\text{I}_4\text{F}_2)}{(\text{I}_2)^3(\text{F}_2)^3} \quad \leftarrow 1 \frac{1}{2} \text{ marks}\]

\[K_{eq} = \frac{(0.00400)^2(0.00200)}{(0.0140)^3(0.0240)^3} = 8.44 \times 10^2\]
\[\text{[Fe}^{3+}] = \frac{50.0 \text{ mL}}{80.0 \text{ mL}} \times 0.10 \text{ M} = 0.0625 \text{ M} \]
\[\text{[SCN}^-] = \frac{30.0 \text{ mL}}{80.0 \text{ mL}} \times 0.20 \text{ M} = 0.0750 \text{ M} \]

\[
\begin{array}{ccc}
\text{[Fe}^{3+}] & \text{SCN}^- & \text{FeSCN}^{2+} \\
0.0625 & 0.0750 & 0 \\
-0.0500 & -0.0500 & 0.0500 \\
0.0125 & 0.0250 & 0.0500 \\
\end{array}
\]

\[K_{eq} = \frac{[\text{FeSCN}^{2+}]}{[\text{Fe}^{3+}] [\text{SCN}^-]} = \frac{0.0500}{(0.0125)(0.0250)} = 1.6 \times 10^2 \]

\[H_2 + I_2 \rightleftharpoons 2 \text{HI} \]

\[
\begin{array}{ccc}
1 & 1 & 2\text{HI} \\
0 & 0 & 0.050 \\
+x & +x & -2x \\
x & x & 0.050 - 2x \\
\end{array}
\]

\[K_{eq} = \frac{[\text{HI}]^2}{[H_2][I_2]} = 1.2 \times 10^{-2} \]

\[\frac{(0.050 - 2x)^2}{x^2} = 1.2 \times 10^{-2} \]

\[\sqrt{\frac{(0.050 - 2x)^2}{x^2}} = \sqrt{1.2 \times 10^{-2}} \]

\[x = [\text{H}_2] = 0.024 \text{ M} \]

\[\text{H}_2(g) + \text{I}_2(g) \rightleftharpoons 2 \text{HI}(g) \]

\[
\begin{array}{ccc}
1 & 1 & 2\text{HI} \\
0 & 0 & 0.180 \\
+x & +x & -2x \\
x & x & 0.180 - 2x \\
\end{array}
\]

\[K_{eq} = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} = 49 \]

\[\frac{(0.180 - 2x)^2}{x^2} = 49 \]

\[x = 0.020 \]

\[[\text{HI}] = 0.180 - 2x = 0.140 \text{ mol/L} \]
\[K_{eq} = \frac{[HI]^3}{[H_2][I_2]} \]

\[\therefore [I_2] = \frac{[HI]^3}{[H_2]K_{eq}} = \frac{(0.40)^3}{(0.012)(7.1 \times 10^2)} \]

\[= 0.019 \text{ mol/L.} \]

\[\text{NOTE: } \frac{1}{2} \text{ mark is deducted for incorrect significant figures.} \]

\[\begin{align*}
\text{F7} & \quad 39 \\
H_2(g) + S(s) & \leftrightarrow H_2S(g) \\
\text{[I]} & \quad 0.050 \quad 0 \\
\text{[C]} & \quad -x \quad +x \\
\text{[E]} & \quad 0.050 - x \quad x \\
\end{align*} \]

\[K_{eq} = \frac{[H_2S]}{[H_2]} \]

\[6.8 \times 10^{-7} = \frac{(x)}{(0.050 - x)} \]

\[x = 0.0032 \]

\[[H_2S] = 3.2 \times 10^{-3} \text{ mol/L.} \]

\[\begin{align*}
\text{F7} & \quad 40 \\
H_3(g) + F_2(g) & \leftrightarrow 2HF(g) \\
\text{[I]} & \quad 2.00 \quad 2.00 \quad 0 \\
\text{[C]} & \quad -x \quad -x \quad +2x \\
\text{[E]} & \quad 2.00 - x \quad 2.00 - x \quad 2x \\
\end{align*} \]

\[K_{eq} = \frac{[HF]^2}{[H_3][F_2]} \]

\[1.00 \times 10^2 = \frac{(2x)^2}{(2.00 - x)^2} \]

\[x = 1.67 \]

\[[H_3] = 2.00 - x = 2.00 - 1.67 = 0.33 \text{ mol/L.} \]
\[2\text{HI} \rightleftharpoons \text{H}_2 + \text{I}_2 \]

\[
\begin{array}{c|ccc}
 & \text{H}_2 & \text{I}_2 & \text{HI} \\
\hline
\text{I} & 4.00 & 0 & 0 \\
\text{C} & -2x & +x & +x \\
\text{E} & 4.00 - 2x & x & x \\
\end{array}
\]

\[K_{\text{eq}} = \frac{[\text{H}_2][\text{I}_2]}{[\text{HI}]^2} \]

\[\frac{x^2}{(4.00 - 2x)^2} = 81.0 \]

\[x = 1.8947 \text{ mol/L} \]

\[[\text{HI}] = 4.00 - 3.79 = 0.21 \text{ mol/L} \]

\[\begin{array}{c|c}
\text{F7} & 42 \\
\end{array} \]

\[K_{\text{eq}} = \frac{[\text{NH}_3]^2}{[\text{N}_2][\text{H}_2]^3} \]

\[626 = \frac{[\text{NH}_3]^2}{(1.06)(0.456)^3} \]

\[[\text{NH}_3] = 7.93 \]

\[\begin{array}{c|c}
\text{F7} & 43 \\
\end{array} \]

\[K_{\text{eq}} = \frac{[\text{FeSCN}^{2-}]}{[\text{Fe}^{3+}][\text{SCN}^-]} \]

\[= \frac{9.22 \times 10^{-4}}{(3.91 \times 10^{-2})(8.02 \times 10^{-3})} \]

\[= 2.94 \times 10^2 \]

\[2.94 \times 10^2 = \frac{x}{(6.27 \times 10^{-3})(3.65 \times 10^{-4})} \]

\[[\text{FeSCN}^{2-}] = x = 6.73 \times 10^{-4} \text{ M} \]

\[\begin{array}{c|c}
\text{F7} & 44 \\
\end{array} \]

(Deduct ½ mark for incorrect significant figures.)
Trial $K_{eq} = \frac{[\text{CH}_4]}{[\text{H}_2]^2}$ ← $\frac{1}{2}$ mark

$$= \frac{5.1}{(3.6 \times 10^{-3})^2}$$ ← 1 mark

$$= 3.9 \times 10^5$$

Since Trial K_{eq} is less than the Actual K_{eq}, the forward reaction is favoured and the $[\text{CH}_4]$ increases. ← 1 mark

Yes, I agree with the student. ← $\frac{1}{2}$ mark

Note: solutions to questions 46,47 intentionally left off the key...hmmmm?