- 1. Which of the following produces a molecular solution when dissolved in water? - A. RbClO - В. СН₃ОН - C. NH₄SCN - D. NaCH₃COO - 2. Which of the following dissolves in water to form an ionic solution? Inetal thou inetal metal + polyatomiclon - 3. When dissolved in water, which of the following forms a molecular solution? - A. HCl(g) - B. NaNO_{3(s)} - (C.) CH₄OH₍₁₎ - D. K₂SO_{4(s)} - 4. Molecular solutions do not conduct electricity because they contain - A. molecules only. - B. cations and anions. C. molecules and anions. - D. molecules and cations, - DISTRACTOR 5. In a 200 mL sample of 0.030 M Na_3PO_4 , the $[Na^+]$ is - A. 0.006 M - B. 0.010 M - C. 0.018 M - D. 0.090 M 0.030M 0.040M to No lons Naspoy -> 3 Nat + Poys - noutral solutions - 6. In a saturated solution of KNO3, the rate of crystallization is - A. equal to zero. - B. equal to the rate of dissolving. less than the rate of dissolving, - greater than the rate of dissolving. Forward rate = reverse rate (disserving) (crystalizing) 7. In an experiment, 0.500 mol of Fe(NO₃)₃ is dissolved in water to produce a 2.00 L solution The NO₃ in this solution is FECNOS)2 -> FE3+3NO2 - - C. 0.750 M D. 1.50 M X = 0,500mc/ = 0,25 M 8. What is the [Co²⁺] and [Cl⁻] when 0.35 mol of CoCl₂ is dissolved in enough water to make 100.0 mL of solution? - A. $[Co^{2+}] = 3.5 \text{ M} \text{ and } [CI^{-}] = 3.5 \text{ M}$ - (B) $[Co^{2+}] = 3.5 \text{ M} \text{ and } [C1^{-}] = 7.0 \text{ M}$ - C. $[Co^{2+}] = 0.35 \text{ M} \text{ and } [C1^{-}] = 0.35 \text{ M}$ - D. $[Co^{2+}] = 0.35 \text{ M} \text{ and } [C1^{-}] = 0.70 \text{ M}$ 9. The equation that represents the equilibrium in a saturated solution of Fe₂(SO₄)₄ is - $A \operatorname{Fe}_{2}(SO_{4})_{3(a)} \rightleftharpoons 3\operatorname{Fe}^{2+}_{(aa)} + 2\operatorname{SO}_{4}^{3-}_{(aa)}$ B. $Fe_2(SO_4)_{3(s)} \rightleftharpoons 2Fe_{(aa)}^{2+} + 3SO_4^{3-}_{(aa)}$ - C. $\operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3(s)} \rightleftharpoons 3\operatorname{Fe}^{3+}_{(gg)} + 2\operatorname{SO}_{4}^{2-}_{(gg)}$ - $(\overline{D}.)$ Fe₂(SO₄)_{3(s)} \rightleftharpoons 2 Fe³⁺_(gg)+3SO₄²⁻_(gg) - 10. When 250 mL of 0.36 M Sr(OH)2 are added to 750 mL of water, the resulting ion concentrations are - A. $[Sr^{2+}] = 0.12 \text{ M} \text{ and } [OH^-] = 0.12 \text{ M}$ - B. $[Sr^{2+}] = 0.12 \text{ M} \text{ and } [OH^{-}] = 0.24 \text{ M}$ - C. $[Sr^{2+}] = 0.090 \,\text{M}$ and $[OH^{-}] = 0.090 \,\text{M}$ - $(D^{*})[Sr^{2+}] = 0.090 \text{ M} \text{ and } [OH^{-}] = 0.180 \text{ M}$ 11. A saturated solution of NiCO3 was evaporated to dryness. A 250.0 mL sample was found to contain 1.1×10⁻² g NiCO₃. The molar mass of NiCO₃ is 118.7 g/mol. The molar solubility of NiCO2 is - $\begin{array}{ccccc} A. & 9.3 \times 10^{-5} \text{ M} \\ \hline B. & 3.7 \times 10^{-4} \text{ M} \end{array}$ - D. 1.4×10^{-7} M 3 2 12. A student evaporated 200.0 mL of a saturated solution of SrCrO4 to dryness. The residue contained 1,2×10⁻³ mol SrCrO₄. The solubility of SrCrO₄ is 1.2×103 mol = 6.0×105M B. $$3.6 \times 10^{-5}$$ M C. $$2.4 \times 10^{-4} \text{ M}$$ (D.) $$6.0 \times 10^{-3} \text{ M}$$ 13. In 1.5 M (NH₄)₂ SO₄, the ion concentrations are $$A. [NH_4^+] = 1.5 M \text{ and } [SO_4^{2-}] = 1.5 M$$ B. $$[NH_4^+] = 1.5 \text{ M} \text{ and } [SO_4^{2-}] = 3.0 \text{ M}$$ (C) $$[NH_4^+] = 3.0 \text{ M} \text{ and } [SO_4^{2-}] = 1.5 \text{ M}$$ D. $$[NH_4^+] = 3.0 \text{ M} \text{ and } [SO_4^{2-}] = 3.0 \text{ M}$$ 14. If the solubility of Pb(OH), is 0.155 g/L, then the concentration of each ion in a saturated 0.155g x lmol = 6.43x1024 M=X solution of a Pb(OH), is A. $$[Pb^{2+}] = 0.155 \text{ g/L} \text{ and } [OH^-] = 0.155 \text{ g/L}$$ B. $$[Pb^{2+}] = 0.052 \text{ g/L} \text{ and } [OH^-] = 0.103 \text{ g/L}$$ (C.) $$[Pb^{2+}] = 6.43 \times 10^{-4} \text{ M and } [OH^{-}] = 1.29 \times 10^{-3} \text{ M}$$ C $$[Pb^{2+}] = 6.43 \times 10^{-4} \text{ M} \text{ and } [OH^-] = 1.29 \times 10^{-3} \text{ M}$$ D. $$[Pb^{2+}] = 6.43 \times 10^{-4} \text{ M} \text{ and } [OH^{-}] = 6.43 \times 10^{-4} \text{ M}$$ B. $$[Pb^{2+}] = 0.052 \text{ g/L and } [OH^-] = 0.103 \text{ g/L}$$ (C) $[Pb^{2+}] = 6.43 \times 10^{-4} \text{ M and } [OH^-] = 1.29 \times 10^{-3} \text{ M}$ (D) $[Pb^{2+}] = 6.43 \times 10^{-4} \text{ M and } [OH^-] = 6.43 \times 10^{-4} \text{ M}$ 15. The equation representing the equilibrium in a saturated solution of CaSO₄ is (A) $$CaSO_{4(s)} \rightleftharpoons Ca^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$$ B. $$CaSO_{4(s)} \rightleftharpoons Ca^{2+}_{(aq)} + S^{2-}_{(aq)} + 4O^{2-}_{(aq)}$$ C. $$CaSO_{4(s)} + H_2O_{(\ell)} \rightleftarrows CaO_{(aq)} + H_2SO_{4(aq)}$$ D. $$CaSO_{4(s)} + 2H_2O_{(t)} \rightleftharpoons Ca(OH)_{2(aq)} + H_2SO_{4(aq)}$$ 16. A 3.0 L solution of NiCl2 is found to have a chloride concentration of 0.60 M. The concentration of nickel(II) ions in this solution is 17. At a certain temperature, 7.0×10^{-4} mol MgSO₄ is present in 100.0 mL of solution. The concentration of the Mg2+ in this solution is A. $$7.0 \times 10^{-5} \text{ M}$$ (C.) $$7.0 \times 10^{-3}$$ M $$[Mg^{2+}] = x = \frac{7.0 \times 10^{-6} \text{ mol}}{0.1000 L}$$ $MgSO_{+} \rightarrow Mg^{2+} + SO_{+}^{2-}$ $\times \times \times \times$ 18. When equal volumes of 0.20 M SrBr₂ and 0.20 M AgNO₃ are combined. - A. no precipitate forms. - B) a precipitate of only AgBr forms. - C. a precipitate of only Sr(NO₃)₂ forms. SVB12 +247ND3 19. When equal volumes of 0.20 M ZnSO4 and 0.20 M Sr(OH), are combined, A. no precipitate forms. $$\frac{1}{2}$$ NSO₄ + Sr(oH)₂ \Rightarrow Zn(oH)₂ + Sr(oH)₂ \Rightarrow Zn(oH)₂ + - C. a precipitate of only Zn(OH), forms. - D.) precipitates of both SrSO4 and Zn(OH), form. Low Saub lity 20. Consider the following anions: | | ANION | | |------|---|---------| | L | 10.0 mL of 0.20 M Cl | €-1013t | | II. | 10.0 mL of 0.20 M OH | £', | | III. | 10.0 mL of 0.20 M SO ₃ ²⁻ | Lo' | | | | , 20119 | When 10.0 mL of 0.20 M Pb(NO₃)₂ are added to each of the above, precipitates form in - A. I and II only. - B. I and III only. - C. II and III only. - D. 1, II and III. positive ion reacts | | - | Λ. | | W | |---|---|-----|--------|---| | 2 | L | OP. | Secure | | | 21. Which of the following 0.20 M | solutions will not form a precipitate when mixed with an equa | |--|--| | volume of 0.20 M Sr(OH) ₂ ? | Company and the contract of th | | ρ, | A. | CaS | 512+ | X | X | PPT | X | |----|----|--------------------|------|------|------------|------|-----| | | B. | NH ₄ Cl | | 25 1 | i
NH4 i | Nati | Bar | - 22. When equal volumes of 0.2 M NH₄Cl and 0.2 M CuSO₄ are combined, - A. a precipitate does not form. - (NHty)250, happt B. a precipitate of CuCl, forms. - C. a precipitate of (NH₄)₂ SO₄ forms. - D. a precipitate of both (NH₄)₂ SO₄ and CuCl, forms. - When equal volumes of 0.2 M K₂CO₃ and 0.2 M Na₃PO₄ are mixed, - (A) no precipitate will form. B. a precipitate of K₃PO₄ will form. - C. a precipitate of Na₂CO₃ will form. - D. a precipitate of both K₂PO₄ and Na₂CO₃ will form. - When 0.20 M Al₂(SO₄)₃ is added to an equal volume of 0.20 M CaCl₂, - A. AlCl₂ precipitates. - B. CaSO₄ precipitates. - C. AlCl₂ and CaSO₄ precipitate. - D. no precipitate forms. - 25. The complete ionic equation for the reaction between $MgCl_{2(nq)}$ and $AgNO_{3(nq)}$ is $$A. Ag^{+}_{(aq)} + Cl^{-}_{(aq)} \longrightarrow AgCl_{(s)}$$ B. $$2AgNO_{3(qq)} + MgCl_{2(qq)} \longrightarrow 2AgCl_{(s)} + Mg(NO_3)_{2(qq)}$$ C. $$2Ag_{(aq)}^{+} + Mg_{(aq)}^{2+} + 2NO_{3(aq)}^{-} + 2Cl_{(aq)}^{-} \longrightarrow MgCl_{2(x)} + 2Ag_{(aq)}^{+} + 2NO_{3(aq)}^{-}$$ $$D: 2Ag^{+}_{(aq)} + 2NO_{3(aq)} + Mg^{2+}_{(aq)} + 2Cl^{-}_{(aq)} \longrightarrow 2AgCl_{(s)} + Mg^{2+}_{(aq)} + 2NO_{3(aq)}$$ 26. A precipitation reaction occurs when equal volumes of 0.2 M Pb(NO₃)₂ and 0.2 M KI are mixed The net ionic equation for this reaction is (A.) $$Pb_{(aq)}^{2+} + 2I_{(aq)}^{-} \rightarrow PbI_{2(s)}$$ - B. $PbI_{2(s)} \rightarrow Pb_{(re)}^{2+} + 2I_{(re)}^{-}$ - C. $K_{(aq)}^+ + NO_{3(aq)}^- \rightarrow KNO_{3(x)}$ - D. $KNO_{3(x)} \rightarrow K^{+}_{(aa)} + NO^{-}_{3(aa)}$ - 27. A net ionic equation for the reaction between CH₃COOH and KOH is A. $$CH_3COO_{(aq)}^- + K_{(aq)}^+ \rightleftarrows CH_3COOK_{(aq)}$$ - B. $CH_3COOH_{(aq)} + OH_{(aq)} \rightleftharpoons H_2O_{(t)} + CH_3COO_{(aq)}$ - C. $CH_3COOH_{(aq)} + KOH_{(aq)} \rightleftarrows H_2O_{(i)} + CH_3COOK_{(aq)}$ - D. $CH_3COOH_{(qq)} + K_{(qq)}^+ + OH_{(qq)}^- \rightleftharpoons H_2O_{(t)} + KCH_3COO_{(qq)}$ - formed. The net ionic eq. A. $K^{+}_{(aq)} + NO_{3}^{-}_{(aq)} \rightarrow KNO_{3(s)}$ of 0.20 M CaCl₂, B. $2Ag^{+}_{(aq)} + CrO_{4}^{2-}_{(aq)} \rightarrow Ag_{2}CrO_{4(s)} + 2KNO_{3(s)}$ C. $K_{2}CrO_{4(aq)} + 2AgNO_{3(aq)} \rightarrow Ag_{2}CrO_{4(s)} + 2KNO_{3(s)}$ D. $2Ag^{+}_{(aq)} + CrO_{4}^{2-}_{(aq)} + 2K^{+}_{(aq)} + 2NO_{3}^{-}_{(aq)} \rightarrow Ag_{2}Cr$ 28. When equal volumes of 0.20 M K₂CrO₄ and 0.20 M AgNO₃ are mixed, a red precipitate is A. $$K^+_{(ag)} + NO_3^-_{(ag)} \rightarrow KNO_{3(g)}$$ $$B. 2Ag^{+}_{(aq)} + CrO_4^{2-}_{(aq)} \rightarrow Ag_2CrO_{4(r)}$$ C. $$K_2CrO_{4(aq)} + 2AgNO_{3(aq)} \rightarrow Ag_2CrO_{4(a)} + 2KNO_{3(a)}$$ D. $$2Ag_{(aq)}^{+} + CrO_{4(aq)}^{2-} + 2K_{(aq)}^{+} + 2NO_{3(aq)}^{-} \rightarrow Ag_{2}CrO_{4(a)} + 2KNO_{3(a)}$$ - 29. Which of the following has a solubility of less than 0.10 M? - A. SrS - B. SrCl₂ - C. SrSO₄ - D. Sr(OH). - 30. Which of the following units is commonly used to describe solubility? - A. mL/s 31. The net ionic equation for the reaction between Sr(OH)2 and H2SO4 is A. $$H^+ + OH^- \rightarrow H_2O$$ B. $$Sr^{2+} + SO_4^{2-} \rightarrow SrSO_4$$ C. $$Sr(OH)_4 + H_2SO_4 \rightarrow SrSO_4 + 2H_2O$$ D. $$Sr^{2+} + 2OH^- + 2H^+ + SO_4^{2-} \rightarrow SrSO_4 + 2H_2O$$ 32. When equal volumes of 0.20 M CuSO₄ and 0.20 M Li₂S are combined, the complete ionic equation is 33. A solution contains two cations, each having a concentration of 0.20 M. When an equal volume of 0.20 M OH is added, these cations are removed from the solution by precipitation. These ions are 34. Which one of the following salts is soluble? - A. BaSO₄ - B. CaCO₁ - C. K₃PO₄ Two ions found in hard water are Ca²⁺ and Mg²⁺. Which of the following will precipitate only one of these ions? ppt only 1 ion 36. Which of the following anions could be used to separate Pb2+ from Ba2+ by precipitation? 37. Which of the following causes a precipitate to form when $Sr^{2+}_{(as)}$ is added but not when $Zn^{2+}_{(aq)}$ is added? 38. A solution contains a mixture of SO₄²⁻ and S²⁻. Which of the following cations could be used to remove only the SO₄²⁻ from the solution by precipitation? 39. A solution containing an unknown cation was added to three solutions and the following observations were recorded: | | SOLUTION | OBSERVATION | |--------|---------------------------------|----------------| | of one | | | | and or | Nal | no precipitate | | 042- | Na ₂ SO ₄ | precipitate | | ~)H- | NaOH | no precipitate | The unknown cation is 40. To remove Mg²⁺ from a solution by precipitation, a student should add | | A. | |-----|-----| | 07 | (n) | | 1 | D. | | * / | cs/ | Nal KOH C. Li2SO4 $D. (NH_4)_2 S$ 41. A student wishes to identify an unknown cation in a solution. A precipitate does not form with the addition of SO_4^{2-} , but does form with the addition of S^{2-} . Which of the following is the unknown 42. A solution containing a single unknown cation is added to three test tubes. The following anions were added and observations were recorded: | TEST TUBE | ANION ADDED | OBSERVATION | |-----------|-------------------------------|-------------| | 1 | SO ₄ ²⁻ | precipitate | | 2 | S ²⁻ | precipitate | | 3 | OH- | precipitate | The solution contains B. Ag⁺ or Pb²⁺ C. Ca²⁺ or Ba²⁺ 43. Which of the following would precipitate the Ca²⁺ and Mg²⁺ found in hard water? $$A$$. S^2 р. сн₃соо- 44. From the list of salts below, how many are considered soluble at 25°C? CuCl 2 Ag₃PO₄ A. zero B. one C. two D. three 45. A solution contains CO₃²⁻ and OH⁻. Separation of these two anions by selective precipitation is accomplished by first adding Sr(NO₃)₂ solution, then filtering and finally adding to the filtrate a solution of A. HNO₃ В. RbNO₂ Cations are all cauble C. NH₄NO₃ D. $Zn(NO_3)_2$ 46. Which of the following ions could be used to separate $\operatorname{Cl}^-_{(aq)}$ from $\operatorname{SO}^{2-}_{4(aq)}$ by precipitation? (B.) Ca2+ C. NH₄⁺ 47. A nitrate solution containing an unknown cation is added to each of the following three test tubes. A precipitate forms in one test tube only. The unknown cation is 48. Which of the following could be used to separate Pb2+ from Ba2+ by precipitation? A. Na₂S B. NaOH C. Na₂CO₃ D. Na₂SO₄ 49. Which of the following compounds could be used to prepare a 0.20 M solution of hydroxide ion? D. Zn(OH)₂ ### PART B: WRITTEN RESPONSE #### Value: 14 marks Suggested Time: 15 minutes INSTRUCTIONS: You will be expected to communicate your knowledge and understanding of chemical principals in a clear and logical manner. Your steps and assumptions leading to a solution must be written in the spaces below the questions. Answers must include units where appropriate and be given the correct number of significant figures. For questions involving calculations, full marks will NOT be given for providing only an answer. Calculate the maximum mass of BaCl₂₍₁₎ that can be added to 250 mL 1. of 0.50 M Pb(NO₃)_{2|aq|} without forming a precipitate of PbCl_{2(x)}. PbC($$_{2}$$) $_{3}$) $_{5}$ $_{7}$ $_$ After a 50.0 mL sample of a saturated solution of Ag₂SO₄ was heated to dryness, 7.2×10^{-4} g of solid Ag_2SO_4 remained. What is the value of Ken for AgaSO4? $$Ag_{2}SO_{4(S)} = 2Ag^{4} + SO_{2}^{2}$$ $$ksp = [Ag^{4}]^{2}(SO_{2}^{2}]$$ $$ksp = (2x)^{2}(x)$$ $$ksp = 4x^{3}$$ $$ksp = 4(A.6[1 \times 0^{-5}])^{3}$$ $$= [3.9 \times 10^{-13}]$$ (6 marks) 4,899 × 10 mola x molphels $= 2.45 \times 10^{-3} \text{ mol}$ $= 4 (1.8 \times 10^{-5})^{3}$ $= 4 \cdot (0.17 \times 10^{-5})$ $= \frac{1}{[\text{Ca}^{2+}][\text{OH}^{-}]^{2}}$ $\text{C. } K_{yy} = [\text{Ca}^{2+}][\text{2OH}^{-}]^{2}$ 1. The compound Ag₂S has a solubility of 1.3×10⁻⁴ moles per litre at 25°C. The K_{sp} for this compound is D. 3.4×10^{-8} Ksp= 4x3 = 4(13x10-4m)3 2. In a saturated solution of zinc hydroxide, at 40° C, the $[Zn^{2+}] = 1.8 \times 10^{-5}$ M. The K_{sn} of Zn(OH), is $[2n^{2+}] = [2n(OH)_2]$ 3. Saturated solutions of Na₂S, CuS, SnS₂ and Al₂S₃ are prepared at 25°C. The [S²⁻] will be greatest in the solution of 4. The K_{φ} expression for calcium hydroxide is $(a(ch)_2 + (ah)_2 (a$ $(A.) K_{sp} = [Ca^{2+}][OH^-]^2$ $D_{x} K_{yp} = \frac{1}{[Ca^{2+}][2OH^{-}]^{2}}$ $$(B.)$$ 3.4×10⁻⁶ M $$[5/27] = \frac{|89|}{|50|} = \frac{3.4 \times 10^{-7}}{0.10 \text{ M}}$$ 6. A solution of AgNO₃ is slowly added to a mixture containing 0.10 M I⁻, Cl⁻, Br⁻ and IO₃⁻. The precipitate which forms first is ## The solubility product expression for a saturated solution of Fe₂(SO₄)₃ is $$(A.) K_{sp} = [Fe^{3+}]^2 [SO_4^{2-}]^3$$ B. $$K_{sp} = [2 \text{ Fe}^{3+}][3 \text{SO}_4^{2-}]$$ $$C. K_{sp} = \frac{\left[Fe^{3+}\right]^2 \left[SO_4^{2-}\right]^3}{\left[Fe_2(SO_4)_3\right]}$$ D. $$K_{sp} = \frac{[2 \text{Fe}^{3+}][3 \text{SO}_4^{2-}]}{[\text{Fe}_2(\text{SO}_4)_3]}$$ # At 25°C, the maximum [Zn²⁺] that can exist in 0.250 M Na₂S is A. $$5.0 \times 10^{-26} \,\mathrm{M}$$ A. $$5.0 \times 10^{-26} M$$ B. $2.0 \times 10^{-25} M$ B. $$2.0 \times 10^{-25} \text{ M}$$ C. $8.0 \times 10^{-25} \text{ M}$ $$2.0 \times 10^{-25} = (2n^{24})(0.250)$$ ## The molar solubility of iron(II) sulphide is A. $$3.6 \times 10^{-37}$$ M FeS(s) = $$Fe^{2+} + S^{2-}$$ $Ksp = (Fc^{2+})(S^{2-})$ $Ksp = x^{2-}$ $$ksp = 4x^3$$ $$D_{0.50}$$ M $$K_{SP} = X^{2}$$ $K_{SP} = (7.1 \times 10^{5})^{2}$ ### 13. Consider the following equation: $$AgCl_{(s)} \rightleftarrows Ag^{+}_{(aq)} + Cl^{-}_{(sq)}$$ Which of the following graphs represents the relationship between [Ag+] and [Cl-] in this system at a constant temperature? A. C. D, ## 14. The relationship between the solubility of SrF2 and its K_{sp} is A. solubility = $$\frac{\sqrt[3]{K_{xp}}}{4}$$ B. solubility = $$\sqrt[3]{\frac{K_{sp}}{2}}$$ (C.) solubility = $$\sqrt[3]{\frac{K_{sp}}{4}}$$ D. solubility = $$\sqrt{K_{sp}}$$ 15. The maximum $$[SO_4^{2-}]$$ that can exist in 1.0×10^{-9} M Ca $(NO_3)_2$ without a precipitate forming is A. 7.1×10^{-5} M B. $$1.0 \times 10^{-3}$$ M KSp = 5.3×10 D. no precipitate forms because the Trial 1on Product < $$K_{yy}$$ A.) a precipitate forms since Trial Ion Product > $$K_{sp}$$ C. no precipitate forms since Trial Ion Product > $$K_{sp}$$ 18. When solutions of $$Pb(NO_3)_2$$ and NaCl are mixed, the trial ion product (Trial K_{sp}) is 9.8×10^{-6} . Which of the following statements is true? A. A precipitate forms because $$K_{ap} > 9.8 \times 10^{-6}$$ B. A precipitate forms because $$K_{sp} < 9.8 \times 10^{-6}$$ C. A precipitate does not form because $$K_{sp} < 9.8 \times 10^{-6}$$ $$(D_{\cdot})$$ A precipitate does not form because $K_{sp} > 9.8 \times 10^{-6}$ $$810^{-6}$$ PbC/2 = Ppt. 810^{-6} Resp = 1.2×10⁻⁵ 9.8×10^{-6} PbC/2 A. a precipitate forms because trial ion product $$< K_{sp}$$ (B.) a precipitate forms because trial ion product > $$K_{sp}$$ C. a precipitate does not form because trial ion product $$< K_{sp}$$ Value: 6 marks Suggested Time: 10 minutes INSTRUCTIONS: chemical principals in a clear and logical manner. You will be expected to communicate your knowledge and understanding of below the questions. Your steps and assumptions leading to a solution must be written in the spaces number of significant figures. Answers must include units where appropriate and be given the correct providing only an answer. For questions involving calculations, full marks will NOT be given for Write the net ionic equation for the reaction between $Pb(NO_3)_{2(ag)}$ and $NaCl_{(ag)}$. Pb(NO3)2 cay) + 2 Nacl(ay) -> PbC/2 co) + (2 marks) 2 When a solution of $Na_2CO_{\mathfrak{A}(aq)}$ is mixed with a solution of $Ca(NO_3)_{\mathfrak{L}(aq)}$ a precipitate forms. (I mark) Write the net ionic equation for the precipitation reaction $\dot{\omega}$ Determine $\left[\operatorname{Fe}^{2+}\right]$ and $\left[\operatorname{F}^{-}\right]$ in the solution. A 100.0 mL saturated solution of FeF2 contains 0.0787g of solute (3 marks) $$X = 0.07879 \times \frac{1000}{9} \times \frac{1000}{9} = 8.39 \times 10^{3} M$$ $$[F-7] = 2(8.39 \times 10^{3} M)$$ $$[F-7] = 2(8.39 \times 10^{3} M)$$ END OF EXAMINATION