Problem Set #4

From Solubility to Ksp

The K_{sp} is a measure of the solubility of an ionic salt. The <u>larger</u> the value of the K_{sp} , the <u>greater</u> the <u>solubility</u> of the salt (if you are comparing ionic salts with the same number of aqueous ions!)

You can only calculate a K_{sp} if the solution is <u>saturated</u>. Only <u>saturated</u> salt <u>solutions</u> are in <u>equilibrium</u>. You can calculate the K_{sp} from the solubility of a salt, since the solubility represents the concentration required to saturate a solution.

1. Calculate the K_{sp} for CaCl₂ if 2.00x10² g of CaCl₂ is required to saturate 100.0mL of solution.

$$CaCl_{2}(s) \rightleftharpoons Ca^{2} + 2Ci^{2} \quad k_{5p} = Cca^{2}JCcc_{3}^{2}$$

$$= (x)(2x)^{2} \quad k_{5p} = 23328$$

2. Calculate the K_{sp} for AlCl3 if 100.0g is required to saturate 150.0 mL of a solution.

$$A|C|_{3 \cup 3} \stackrel{?}{=} A|^{3^{1}} + 3 C I^{7}$$

$$\times \qquad \times \qquad 3 \times$$

$$= (\times)(3 \times)^{3} \qquad = 16790$$

$$= (\times)(3 \times)^{3} \qquad = 16790$$

$$= (\times)(3 \times)^{3} \qquad = 16790$$

3. The solubility of SrF_2 is 2.83 x 10^{-5} M. Calculate the K_{sp} .

Solution of ST2 18 2:03 x 10 11 Calculate the HSp.

SY
$$F_{2}$$
 (1) F_{3} (2) F_{3} (2) F_{3} (3) F_{4} (2) F_{3} (3) F_{3} (4) F_{3} (4) F_{3} (5) F_{3} (1) F_{3} (1) F_{3} (2) F_{3} (3) F_{3} (3) F_{3} (4) F_{3} (4) F_{3} (5) F_{3} (6) F_{3} (7) F_{3} (8) F_{3} (8) F_{3} (10) F_{3} (

4. The solubility of GaBr₃ is 15.8 g per 100.0 mL. Calculate the K_{sp} .

Gab₁₃ (s) =
$$\frac{1}{500}$$
 Gab³ + 3B² Ksp = $\frac{1}{500}$ (0.5107) $\frac{1}{500}$ Ksp = $\frac{1}{500}$ Ksp = $\frac{1}{500}$ (0.5107) $\frac{1}{500}$ Ksp = $\frac{1}{$

5. The solubility of Ag₂SO₄ is 1.33 x $10^{\text{-7}}\text{g}$ per 100.0 mL. Calculate the K_{sp}.

$$Hg_{2}So_{+}(s) \rightleftharpoons 2A_{0}^{+} + So_{4}^{2} + Ksp = [A_{0}^{+}]^{2}[so_{4}^{2}] = (2x)^{2}(x)$$

$$= 4x^{3}$$

$$[Ag_{2}So_{4}] = \frac{1.33 \times 10^{7} \text{ g}}{0.1000 \text{ k}} \times \frac{\text{Imol}}{3 \text{ ling g}} = 4.264 \times 10^{7} \text{ M}^{2} \times \frac{\text{Imol}}{3.10 \times 10^{72} \text{ s}}$$

6. If 2.9×10^{-3} g of Ca(OH)₂ is needed to saturate 250.0 mL of solution, what is the K_{sp} ?