La Dans

g) Advanced pH and pOH Calculations

i) Example: 50.0ml of 0.200 M NaOH is reacted with 30.0ml of 0.250 M HCl. What is the pH of the resulting solution?

 $\textcircled{1} \ \, \text{NaOH} \, + \, \text{HCl} \, \rightarrow \, \text{NaCl} \, + \, \text{H}_2\text{O}$

moles of acid or base in excess will determine the pH

- ② moles NaOH present = $0.200M \times 0.0500L = 0.0100$ moles moles HCl present = $0.250M \times 0.0300L = 0.00750$ moles
- ③ NaOH is in excess by: 0.0100 0.00750 = 0.00250 moles
- [NaOH] = [OH $^{-}$] = 0.00250 moles / (0.0300L + 0.0500L) = 0.0312 M
- pOH = -log[0.0312M] = 1.506
- © pH = 14 pOH = 14 1.506 = 12.494

ii) Example: Calculate the pH if 1.25 L of 0.300 M KOH is added to 0.500 L of 0.0900 M $\rm H_2SO_4$.

 $\textcircled{1} \ 2KOH \ + \ H_2SO_4 \ \rightarrow \ K_2SO_4 \ + \ 2H_2O$

moles of acid or base in excess will determine the pH

② moles [OH] present = $0.300M \times 1.25L = 0.375$ moles moles [H₃O⁺] present = $0.0900M \times 0.500L \times 2 = 0.0900$ moles

cause each H₂SO₄ produces two H₃O⁺ 's

- ③ [OH] is in excess by: 0.375 0.0900 = 0.285 moles
- $(0H^{-}) = 0.285 \text{ moles} / (1.25L + 0.500L) = 0.163 \text{ M}$
- pOH = $-\log[0.163M] = 0.788$
- © pH = 14 0.788 = 13.212

iii) Example: Calculate the pOH if 0.0300 L of 0.400 M Ca(OH)₂ is added to 0.250 L of 0.125 M HBr.

- \bigcirc 2HBr + Ca(OH)₂ \rightarrow CaBr₂ + 2H₂O
 - moles of acid or base in excess will determine the pH
- ② moles [OH] present = $0.400M \times 0.0300L \times 2 = 0.0240$ moles moles [H₃O⁺] present = $0.125M \times 0.250L = 0.0312$ moles
- (3) [H₃O⁺] is in excess by: 0.0312 0.0240 = 0.00720 moles
- (0.250L + 0.0300L) = 0.0257 M
- pH = -log[0.0257M] = 1.590
- **6** pOH = 14 1.590 = 12.410

iv) Example: How many grams of NaOH must be added to 0.800 L of 0.0400 M HBr to change the pH to 7.00? (Assume no volume change from adding NaOH)

- \bigcirc NaOH + HBr \rightarrow NaBr + H₂O
- ② want $[H_3O^+] = 10^{-7} = 0.0000001 \text{ M}$
- ③ current $[H_3O^+] = 0.0400 \text{ M}$
- $[H_3O^+] = [OH^-] = 0.0399 \text{ M}$
- © $0.0399 \text{ M} \times 0.800 \text{ L} = 0.0320 \text{ moles NaOH}$
- ② 0.0320 moles x 40 g/mol = 1.28 g NaOH

Do Questions: #58-68 page 143-144