5. Strength of Acids and Bases

a) What is a Strong Acid?

- i) 100% dissociated in water
- ii) No reverse reaction. Not in equilibrium.
- iii) Example:

$$HCl + H_2O \rightarrow H_3O^+ + Cl^-$$
 (no undissociated HCl)
$$1.0M \qquad 1.0M \qquad 1.0M$$

- iv) There are six strong acids. Refer to "Relative Strengths of Acids and Bases" p.334 Hebden.
- v) All six strong acids have the same net result when added to water:

$$H^+ + H_2O \rightarrow H_3O^+$$
 (line 7 on table)

- vi) Therefore, H₃O⁺ is the strongest acid that can exist in water.
- vii) And since, all six strong acids produce the same $[H_3O^+]$ in water, they have the same strength.
- viii) This is called the "Levelling Effect" (the six strong acids are equal in producing H_3O^+)
- ix) Strong acids do not have conjugate bases.

b) What is a Strong Base?

- i) 100% dissociated in water
- ii) No reverse reaction. Not in equilibrium.
- iii) There are **two** strong *Bronsted-Lowry* bases. Refer to "Relative Strengths of Acids and Bases" p.334 Hebden.
- iv) All metal hydroxides are also strong bases.

v) Examples:

$$O^{-2} + H_2O \rightarrow 2OH^-$$
 (Bronsted-Lowry strong base)

1.0M

2.0M

 $NH_2^- + H_2O \rightarrow OH^- + NH_3$ (Bronsted-Lowry strong base)

1.0M

1.0M

1.0M

1.0M

1.0M

1.0M

vi) All strong bases have the same net result when added to water:

Base +
$$H_2O$$
 \rightarrow OH^- + H^+ (line 3 from bottom of table)

- vii) Therefore, OH is the strongest base that can exist in water.
- viii) And since, all strong bases produce the same [OH] in water, they have the same strength.
- ix) This is another instance of the "Levelling Effect"
- x) Strong bases do not have conjugate acids

c) What is a Weak Acid?

- i) Not 100% dissociated in water.
- ii) They form an equilibrium.
- iii) There are 29 weak acids. Refer to "Relative Strengths of Acids and Bases" p.334 Hebden on the left side of the equilibrium (HIO₃ to H₂O).
- iv) The higher up in the table, the stronger the acid. Stronger = more dissociation!

v) Example: HF vs. CH₃COOH. Which is stronger?

1.0M CH₃COOH vs. 1.0M HF

$$CH_3COOH + H_2O$$
 $H_3O^+ + CH_3COO^-$
 $0.996M$ $0.004M$ $0.004M$
 $HF + H_2O$ $H_3O^+ + F^-$
 $0.97M$ $0.03M$ $0.03M$

vi) The stronger the acid, the weaker its conjugate base.

d) What is a Weak Base?

- i) Not 100% dissociated.
- ii) They form an equilibrium.
- ii) There are **29** weak bases. Refer to "Relative Strengths of Acids and Bases" p.334 Hebden on the right side of the equilibrium (H₂O to PO₄-³).
- iii) The lower in the table, the stronger the base. Stronger = better ability to receive a proton.
- iv) Example: NO2 vs. NH3. Which is stronger?

NH₃ (lower in table)

v) The stronger the base, the weaker its conjugate acid.

e) Equilibrium Reactions with Table of Relative Strengths

Example:
$$H_2CO_3$$
 $H^+ + HCO_3$

Acid reaction: H_2CO_3 $_{(aq)} + H_2O$ $_{(l)}$ H_3O^+ $_{(aq)} + HCO_3$ $_{(aq)}$

Base reaction: HCO_3 $_{(aq)} + H_2O$ $_{(l)}$ H_2CO_3 $_{(aq)} + OH$ $_{(aq)}$

Do Questions: # 21-27 page 125-126